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Méthodes 2 : Mesures et incertitudes
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À savoir
Faire la distinction entre erreur de mesure et incertitude de mesure I.1,3
Connaître les 2 types d’erreurs, leurs causes, leurs effets I.3
Signification de l’écart-type pour la loi normale I.4
Connaître les 2 approches (statistique → type A, et probabiliste → type B) pour
évaluer une incertitude-type II.1,2

Formule de l’incertitude-type pour le type A et pour le type B II.1,2
Formules de l’incertitude-type composée II.3
Formules de l’écart normalisé et du z-score + critère de validation III.1

À savoir faire
Calculer l’incertitude de type A pour une série de valeurs expérimentales. II.1
Calculer l’incertitude de type B pour une mesure expérimentale unique. II.2
Lister les sources d’incertitude possibles I.2
Tester la validité d’un résultat expérimental. III.1
Réaliser une régression linéaire et tester la validité de ce modèle III.2
Réaliser une simulation de Monte-Carlo pour simuler une série de valeurs et déter-
miner une incertitude-type composée. IV.1

Réaliser une simulation de Monte-Carlo pour déterminer les incertitudes-types sur
les paramètres d’un modèle linéaire. IV.2



METH 2 Page 2 / 16 MPSI1 - 2025/2026

I Processus de mesure : variabilité des résultats et incertitude-type
I.1 Un exemple pour poser le problème
Expérience 1 :
On a mesuré la valeur de la résistance d’un conducteur
ohmique 2000 fois, puis représenté les résultats obtenus sur
l’histogramme ci-contre. Que peut-on dire sur la répartition
des résultats ?

Comment expliquer une telle variabilité des résultats ?

Expérience 2 :
On suit le même protocole que dans l’expérience 1, mais avec
un autre multimètre, et on obtient l’histogramme ci-contre.
Les résultats sont-ils identiques ?

Quelle est LA valeur de cette résistance ? Toute la problématique de la détermination de
la mesure d’une grandeur est là :

— Quel résultat choisir ?
— Comment estimer sa « précision » ?
— Comment comparer à une valeur de référence ?

I.2 Variabilité des résultats
En sciences expérimentales, le mesurage d’une grandeur physique est un processus complexe, et la
répétition de la mesure conduit naturellement à une dispersion des valeurs observées. Cette variabilité
fait partie du mesurage !

x• •• • •••••••••••• ••••• •• •• • • •

une valeur donnée par le mesurageEnsemble des valeurs
du mesurage de la grandeur X

Plusieurs raisons peuvent expliquer cette variabilité :
— La grandeur à mesurer n’est pas parfaitement définie. Exemples : la largeur d’une table peut varier

suivant la longueur, la surface d’un liquide n’est pas plane, etc.
— Les conditions environnementales (température, pression, etc.) ne sont pas parfaitement stables.
— L’instrument de mesure est source d’erreur (temps de réponse, exactitude, sensibilité).
— L’opérateur ne refait jamais la même mesure exactement dans les mêmes conditions (fatigue,

erreurs de parallaxe, effet de ménisque dans une pipette, etc.)
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Remarque
Une mesure comporte en général plusieurs opérations dont chacune peut être source de
variabilité. Il sera important de savoir distinguer les sources de variabilité importante de
celles qui sont négligeables.

I.3 Erreur et incertitude

Erreur de mesure : c’est la différence entre la valeur mesurée et la valeur vraie

erreur = |xmes − xvraie|

Elle possède deux composantes distinctes :
— L’erreur aléatoire : elle provient des variations temporelles et spatiales non prévisibles de

grandeurs d’influence, elle n’a pas d’effet sur la valeur moyenne.
— L’erreur systématique : la mesure est systématiquement décalée par rapport à la valeur

vraie. Elle provient d’un effet reconnu d’une grandeur d’influence (erreur de protocole,
défaut d’un appareil, etc.).

Fidélité et justesse : Une mesure est d’autant plus fidèle que l’erreur aléatoire est faible,
d’autant plus juste que l’erreur systématique est faible.

Incertitude de mesure : c’est un paramètre qui caractérise la dispersion des valeurs autour de
la valeur moyenne des différentes valeurs mesurées d’un mesurande. Elle peut être vue comme
un « doute » sur la valeur mesurée.

Vocabulaire

Remarques
• Il ne faut pas confondre erreur et incertitude : une grande incertitude implique une plus

grande chance d’erreur, mais une faible erreur n’implique pas une faible incertitude, ça
peut être un coup de chance !

• En augmentant le nombre de mesurages, on peut réduire les effets de l’erreur aléatoire sur
la précision du résultat, mais on ne réduit pas l’effet de l’erreur systématique.

• Dans le cas d’une erreur systématique non négligeable devant la précision requise, on peut
appliquer une correction au résultat.

On a représenté les résultats d’un mesurage par une analogie avec une cible de tir à l’arc (le centre
de la cible représente la valeur varie). Préciser dans chaque cas si la mesure est juste et/ou fidèle
ainsi que le(s) type(s) d’erreur présent(s).

Application

• •

•

•

•

•

•••••

•

••
•

•
•

•
•

•
• •



METH 2 Page 4 / 16 MPSI1 - 2025/2026

I.4 Résultat : meilleur estimateur et incertitude-type associée à un mesurage

Donner le résultat du mesurage d’une grandeur physique X, c’est :
— Donner la meilleure estimation de sa valeur vraie (souvent inconnue, ce qui revient à une absence

de cible dans les schémas de la page 3 !)
ET

— Caractériser la dispersion des valeurs que peut prendre cette grandeur physique. Du fait de cette
variabilité intrinsèque au processus mesurage, on fait appel à la théorie des probabilités pour décrire
correctement la mesure d’une grandeur, en utilisant la notion d’écart-type que nous expliciterons
plus loin.

Résultat d’un mesurage : Le résultat d’un mesurage n’est pas une valeur unique mais un
ensemble de valeurs numériques, raisonnablement attribuables au mesurande.

Notation : Tout résultat expérimental doit être accompagné d’une incertitude de mesure
et d’une unité :

X = xmes unité avec u(X) = ... unité

avec : xmes = meilleure estimation de la grandeur mesurée (valeur expérimentale dans le cas
d’une mesure unique, ou moyenne arithmétique des valeurs expérimentales)
u(X) = incertitude-type sur la mesure de la grandeur X, qui définit un intervalle de
confiance pour l’estimation de la grandeur mesurée, elle est liée à la notion d’écart-type

Méthode

Remarques
• On écrit l’incertitude-type avec 2 chiffres significatifs (arrondi au supérieur), et le chiffre

significatif de xmes doit coïncider avec le dernier chiffre significatif de u(X).
• Ce n’est pas la résolution de l’instrument de mesure qui fixe le nombre de chiffres signifi-

catifs de la valeur mesurée.

Les résultats suivants sont-ils écrits correctement ? Si non, les corriger.
Application

R = 18, 3 Ω avec u(R) = 0,21 W

R = 16 Ω avec u(R) = 0,102 W

R = 11, 34 Ω avec u(R) = 0,16 W

R = 18, 367 Ω avec u(R) = 0,20 W

II Différents modes d’évaluation de l’incertitude-type sur une grandeur
On rencontre deux situations types selon ce qui limite la précision du résultat obtenu :

— Cas no 1 : La précision du résultat est limitée par la répétabilité du protocole expérimental (chaque
observation donne des résultats différents). On réalise alors un traitement statistique de l’incerti-
tude : évaluation de type A.

— Cas no 2 : Certaines expériences n’ont pas de variabilité observée (en reproduisant la mesure,
on retrouve systématiquement le même résultat), ou il n’est pas possible de reproduire plusieurs
fois le protocole de mesurage. Il faut alors estimer théoriquement la variabilité de la mesure sans
l’observer, on réalise un traitement probabiliste de l’incertitude : évaluation de type B.
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II.1 Série de mesures : évaluation de type A de l’incertitude-type

Si on place sur un axe un ensemble {x1, ..., xN} de N mesures de la valeur d’une grandeur X, comment
donner le résultat ?

x• ••• • • ••• •• ••• •••• • •••• •• •••••• •

Un outil pratique pour visualiser la dispersion des observations réalisées est l’histogramme, grâce auquel
on voit que la répartition des valeurs mesurées suit très souvent une courbe « en cloche ».

x

occurence

occurence
x• ••• • • ••• •• ••• ••• ••• ••• •• ••••••

Cet histogramme « en cloche » peut être assimilé à une fonction « gaussienne », on dit que x suit une
loi normale (c’est la loi de probabilité la plus utilisée en statistique).

Propriétés d’une loi normale :
— Elle est centrée par rapport à la moyenne, notée x, des valeurs prises par la variable x.
— Son étalement est défini par l’écart-type σ : la probabilité d’obtenir une valeur dans l’in-

tervalle [x − σ ; x + σ] est de 68% .

x

densité de probabilité

x x+σx−σ x+2σx−2σ

68 %

95 %

Propriétés

Lors d’une série de mesures, en l’absence d’erreur systématique :
— Il n’y a pas de raison pour que les résultats se répartissent plus d’un côté que de l’autre de la

moyenne arithmétique des résultats, donc la meilleure estimation de la valeur xvraie est obtenue en
faisant la moyenne des valeurs mesurées xmes = x

occurence
x• ••• • • ••• •• ••• ••• ••• ••• •• •••••• •

xmes = x

— La dispersion des valeurs lors d’une observation est donnée par l’écart-type des mesures (écart-
type de l’échantillon) :

σ(x) =
√√√√ 1

n − 1

n∑
i=1

(xi − x)2
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Si une grandeur X est estimée à partir de n observations répétées indépendantes {x1, ..., xn}, et
si σ(X) est l’écart-type expérimental d’une mesure (obtenu à partir de ces n valeurs), alors :
— Sa meilleure estimation est donnée par la moyenne des n valeurs :

X = x = x1 + x2 + ... + xn

n

— L’incertitude-type u(X) sur son estimation x vaut l’écart-type de la moyenne :

u(X) = σ(x) = σ√
n

avec σ(x) = écart-type de l’échantillon =
√√√√ 1

n − 1

n∑
i=1

(xi − x)2

Série de mesure → Type A (approche statistique)

Remarques
• u(X) dépend de la nature du protocole expérimental mis en œuvre, du matériel utilisé,

des conditions expérimentales et de l’habileté des expérimentateurs.

• Pour utiliser une incertitude de type A, il faut au minimum 5 à 10 mesures, mais c’est
inutile de dépasser 20 mesures (une augmentation de n diminue l’incertitude-type mais
cette diminution n’est pratiquement plus efficace au delà de n = 10 mesures).

• L’écart-type de l’échantillon σ(x) est donné dans le menu statistique de la calculatrice
(« Sx » sur les TI, « sx » sur les Casio, « écart-type échantillon » sur les Numworks).

• Justification qualitative du facteur 1√
n

:
Si on effectue n mesures lors du mesu-
rage, x est une moyenne parmi d’autres
possibles : si on refaisait à nouveau n me-
sures, on obtiendrait une autre moyenne.
Or la distribution de l’ensemble des
moyennes est bien moins dispersée que
l’ensemble des mesures uniques (disper-
sion divisée par

√
n), l’estimation à partir

d’une moyenne est « meilleure » que sur
une mesure seule.

x

x

σ(x)
σ(x)

•• • •• ••• • • • •• •• •• •• ••

x•• • •• •• • •• • ••• • •• •• ••

x• •• • •• • •• ••• •••• ••• • •

x• •• ••• •• ••• ••• •••••••

x•• •• • •• ••••• ••• •• •• ••

x• • •• ••• •• ••• • ••• •••••

On effectue 10 mesures de la résistance R d’un conducteur ohmique, les résultats sont présentés
dans le tableau ci-dessous (valeurs en W) :

523,6 523,5 523,4 523,5 523,6 523,4 523,5 523,5 523,6 523,4

Q1. Déterminer (avec le menu « statistiques » de la calculatrice) :
(a) La valeur moyenne de R :
(b) L’écart-type expérimental de la série de mesures :
(c) L’écart-type sur la moyenne :

Q2. Écrire correctement le résultat du mesurage :

Application
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II.2 Mesure unique : évaluation de type B de l’incertitude-type
Dans le cas d’une mesure x isolée (ce qui est le plus fréquent en TP, la plupart du temps il n’est pas
possible de répéter la mesure et il faut se contenter d’un résultat unique !), on utilise aussi la théorie
des probabilités déterminer l’incertitude-type sur la mesure. Il existe différents modèles de densités de
probabilité :

— La loi uniforme sur un intervalle [a, b]
— La loi triangulaire sur un intervalle [a, b] et de maximum en xm.
— La loi Gaussienne (encore appelée loi normale) centrée sur une valeur xm et d’écart-type σ

x

f(x)

a b
Loi uniforme

x

f(x)

xma b
Loi triangulaire (symétrique)

x

f(x)

xm

Loi normale

L’incertitude-type est alors donné par l’écart-type de la distribution retenue.

Dans le cas d’une mesure unique, on suppose que la densité de probabilité est à support borné (type
uniforme ou triangulaire symétrique) et on évalue expérimentalement l’intervalle-support [x − ∆, x + ∆]
dans lequel on estime qu’on aurait 100% de chances d’obtenir n’importe le résultat de mesure si on
répétait l’expérience un grand nombre de fois.

Pour choisir parmi ces différents modèles bornés, on procède à l’évaluation de l’erreur possible (souvent
donnée par la précision de l’appareil de mesure, notée ∆), et on se questionne sur la distribution de
probabilité en dessous de cette précision : la valeur vraie a-t-elle plus de chance de se trouver au centre
de l’intervalle ou pas ?

Par habitude, n’ayant aucune information en dessous de la précision ∆, on estime que la valeur vraie
xvraie a « autant de chances » de prendre n’importe quelle valeur entre x − ∆ et x + ∆ donc on considère
une probabilité égale pour toutes les valeurs comprises entre x − ∆ et x + ∆, donc on privilégie la
distribution uniforme, et l’incertitude-type sera évaluée avec la loi rectangulaire.

L’incertitude-type dans le cas d’une loi rectangulaire est liée à la précision ∆ par : u(X) = ∆√
3

valeurs de possibles pour la grandeur X

probabilité (loi de distribution rectangulaire)

x − ∆ x + ∆x

Mesure unique → Type B (approche probabiliste)

Remarque
Si on considère une distribution triangulaire symétrique, l’incertitude-type de la mesure
(donné par l’écart-type de la distribution) vaut : u(X) = ∆√

6
.
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— La précision ∆ des instruments de mesure gradués est égale à une demi-graduation.

— La précision d’un multimètre est donnée par le constructeur de l’appareil :
« n%L + n dgt », ou « n%L + nUR », ce qui signifie : n% de la valeur lue + n digit
1 digit (dgt), ou 1 Unité de Représentation (UR) correspond à l’unité du dernier chiffre
affiché à droite de l’écran, c’est-à-dire la plus petite valeur qui puisse être affichée sur le
calibre choisi.

— En chimie, la précision est donnée par la tolérance inscrite sur la verrerie (exemple : fiole
jaugée de 500 mL±0,25 mL donc ∆ = 0,25 mL).

— Dans le cas où la source d’erreur prépondérante n’est pas liées à un appareil de mesure,
la précision ∆ est estimée de façon réaliste, en prenant par exemple la demi-étendue de la
plage de valeurs sur laquelle on est sûr d’avoir la valeur vraie.

Estimation de la précision des appareils de mesure (notée ∆)

Remarques
• La demi-étendue ∆ doit être prise la plus faible possible selon les critères personnels de

l’expérimentateur et selon les conditions de l’expérience, il faut analyser la situation : par
exemple avec un instrument gradué, si la valeur lue tombe « pile »sur une graduation,
on peut réduire ∆ à 1

4 de graduation, par contre elle tombe entre deux graduations de
l’instrument, on choisira ∆ = 1

2graduation, ou si l’expérimentateur est très peu sûr de lui,
il peut prendre ∆ = 1 graduation. Dans tous les cas, justifier le choix fait.

• Pour un appareil à lecture double sur une échelle graduée (règle, balance avec tare, etc.) :
il y a deux causes d’erreur (lors de la mesure du zéro ou du tarage et lors de la lecture
finale). L’erreur due à la résolution va se produire deux fois mais il est probable qu’il y
ait une compensation partielle des erreurs : il faut alors multiplier le demi-intervalle sur
une mesure par

√
2 (conséquence de la propagation des incertitudes dans le cas d’une

soustraction, voir page 10).
• Lorsque lors d’une mesure, il peut y a plusieurs sources d’incertitude :

— les erreurs de repérage par un expérimentateur (netteté d’une image, parallaxe, maxi-
mum d’un signal à l’oscilloscope etc.), l’incertitude associée est notée urepérage

— les erreurs de lecture (liées aux graduations sur une règle, un rapporteur), l’incertitude
associée est notée ulecture

— les erreurs liées à un appareil, l’incertitude associée est notée uappareil

Il faudrait, pour être rigoureux, tenir compte de toutes et calculer :

u(X) =
√

u2
repérage + u2

lecture + u2
appareil

Cependant, pour simplifier, nous ne garderons que celle dont l’influence est la plus
grande (en général le repérage par l’expérimentateur).

— Dans le cas où l’on a procédé à une évaluation de type A et de type B, on admet que
l’incertitude-type globale s’écrit :

u(X) =
√

u2
A(X) + u2

B(X)
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Déterminer dans chaque mesurage la valeur et l’incertitude-type liée à la lecture ou à l’appareil,
puis écrire le résultat de la mesure :

Applications :

ooooooooooThermomètre

oooooooooooooooooooooooooooBaromètre (unité mbar)

oooooooooooooooooooooooooFiole jaugée (pleine)

oooooooooooooooooooooooMultimètre utilisé en ampèremètre (précision : 0,5%L + 0,5 dgt)

ooooooooooooooooooooooooo Oscilloscope (mesure de T ) calibre 10 ms/DIV

oooooooooooooooooooooooooooooooooooooooo Règle
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II.3 Mesure indirecte : évaluation de l’incertitude-type composée
On cherche à obtenir la valeur z d’une grandeur Z à partir de la mesure effective d’autres grandeurs (X
et Y ) dont elle dépend.

On connaît la relation théorique entre les diverses grandeurs Z(X, Y ). L’incertitude sur z est directement
reliée à l’incertitude sur les mesures x et y.

Relation Z = X + Y Z = X − Y Z = X × Y Z = X

Y

Incertitude-type composée u(Z) =
√

u(X)2 + u(Y )2 u(Z)
|z|

=

√√√√(u(X)
x

)2

+
(

u(Y )
y

)2

Incertitude-type composée

Remarques
• Les formules pour le produit simple (Z = X × Y ou Z = X

Y
) sont des cas particuliers

d’une formule plus générale où Z est un produit de puissances : Z = Xα Y β, pour laquelle
on a :

u(Z)
|z|

=

√√√√α2
(

u(X)
x

)2

+ β2
(

u(Y )
y

)2

• Dans les cas où la relation Z(X, Y ) est plus compliquée que celles données ci-dessus,
l’énoncé vous fournira la formule reliant l’incertitude sur z aux incertitudes de mesure (ou
le logiciel Gum_MC : http://jeanmarie.biansan.free.fr/gum_mc.html).

Q1. On souhaite déterminer la vitesse des ultrasons dans l’air à l’aide de la relation c = λ × f .
On a obtenu par mesure directe :
λ = 8,3 mm avec u(λ) = 0,6 mm et f = 4,0000 × 104 Hz avec u(f) = 58 Hz .
Donner le résultat de l’estimation de c.

Q2. Justifier le facteur
√

2 dans l’évaluation de l’incertitude-type d’une longueur mesurée à la règle.

Applications :
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III Validité d’un résultat expérimental
III.1 Compatibilité entre 2 valeurs
Pour valider le résultat d’un mesurage, on peut comparer la valeur obtenue à la valeur obtenue par un
autre procédé de mesurage (ou par une autre personne), ou à une valeur de référence donnée dans des
tables. Pour cela, on dispose de deux outils : l’écart normalisé et z-score.

Écart normalisé EN :
Pour tester la compatibilité entre 2 valeurs
mesurées x1 et x2 assorties des incertitudes-
types u1 et u2 :jjjjjjjjj

EN = |x1 − x2|√
u2

1 + u2
2

Z-score z :
Pour tester la validité entre une valeur mesu-
rée xmes assortie de l’incertitude-type u(X) et
une valeur de référence xref :

z = |xmes − xref|
u(X)

1√
u2

1

Critère : 2 valeurs sont compatibles si EN < 2 ou z < 2.

Écart normalisé et z-score

Remarques
• Le choix du seuil est arbitraire mais utilisé dans de nombreux domaines. Il est lié au fait

que l’intervalle [xmes −2u(X); xmes +2u(X)] est un intervalle de confiance à 95% pour une
distribution qui suit une loi normale (voir courbe page 5). Si z ≪ 2, la compatibilité de
xmes et xref est assurée avec une probabilité d’environ 95%.

• Si l’écart normalisé est supérieur à 2, les résultats ne sont pas compatibles. Il faut chercher
les origines de cette incompatibilité : variabilité des mesures, erreur de manipulation de
calcul, sous-estimation des incertitudes, etc.

Les 3 graphiques ci-dessous représentent des distributions avec en écart normalisé z :

z = 0, 3 z = 2, 1 z = 5, 0

La valeur obtenue pour la célérité des ultrasons dans l’application précédente est-elle en accord
avec la valeur tabulée (prise à la même température) : ctab = 340 m·s−1 ?

Application :
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III.2 Vérification d’une loi : modélisation linéaire
La vérification d’une loi passe souvent par le tracé d’un graphe, on cherche alors à représenter une
droite afin de conclure facilement sur la validité (ou non) de la loi.

Coefficient de corrélation :
On a représenté ci-dessous les mêmes mesures expérimentales, mais avec des incertitudes différentes.
Pour vérifier si la loi étudiée expérimentalement est affine, on effectue une régression linéaire.

Pour caractériser l’alignement des points expérimentaux, la calculatrice ou le logiciel (Excel/Openoffice)
propose un coefficient appelé coefficient de corrélation linéaire r (ou r2). Il est égal à 1 si la relation
est linéaire et s’en écarte si ce n’est pas le cas. Cependant ce coefficient ne permet pas de déterminer
si l’écart à 1 est dû aux incertitudes de mesure ou si cet écart est dû au fait que la relation n’est pas
linéaire. L’exemple ci-dessus montre que ce coefficient est le même quelles que soient les incertitudes. Si
l’on peut croire à la pertinence de l’ajustement dans le cas d), il est plus difficile de s’en convaincre dans
les autres cas.

Le coefficient de corrélation n’est donc pas pertinent pour vérifier une relation linéaire
entre les données.

L’existence d’une droite moyenne ne suffit pas à conclure sur la linéarité de la relation.
Il faut en plus étudier la répartition des points expérimentaux par rapport à la droite
moyenne, et les incertitudes.

Pour tester une relation linéaire entre 2 grandeurs mesurées, il faut utiliser un logiciel de régres-
sion linéaire intégrant les barres d’incertitude :
— Pour vérifier que les valeurs mesurées sont compatibles avec un modèle affine, il faut observer

l’alignement des points sur la droite de régression.
— Pour vérifier que les incertitudes-types sont compatibles avec le modèle affine, il faut vérifier

que la droite de régression passe suffisamment près des points de mesures en tenant compte
des barres d’incertitudes.

Méthode
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Remarques
• Lors d’une régression linéaire avec présence de barres d’incertitude, Regressi donne une

incertitude sur les coefficients de la droite d’ajustement a et b. Cette incertitude est une
incertitude élargie correspondant à un niveau de confiance de 95%.

• On peut également utiliser une méthode numérique pour évaluer les incertitudes-types sur
les coefficients a et b du modèle. Cette méthode appelée Monte-Carlo consiste à générer des
ensembles de nouvelles mesures (xi, yi) puis réaliser une nouvelle régression linéaire. En
réalisant un grand nombre de fois cette opération, on obtient les valeurs des incertitudes-
types sur les coefficients a et b du modèle (en prenant les écarts-types des distributions
de a et b obtenues).

Une régression complète ne se limite pas à l’obtention des paramètres de la droite de régression : il est
indispensable de valider le modèle estimé, c’est-à-dire de vérifier son adéquation aux données analysées.

Résidus e : écarts « verticaux » entre les points de mesure et la droite de régression.

Ainsi, si la droite de régression a pour équation y = ax + b : à chaque valeur xi on peut associer
l’estimation axi + b de Y donnée par la droite de régression, et la comparer à la valeur observée
yi : on obtient ainsi le résidu ei = yi − (axi + b).

— Si le point expérimental appartient à la droite de régression (cas « idéal »), on obtient un
résidu nul : ei = 0 ;

— Sinon, on regarde si ces résidus sont bien aléatoirement distribués autour du 0 et si ils
sont bien inférieurs 2 fois la valeur de l’incertitude-type sur yi.

Méthode : analyse des résidus

Remarques
• si ei ≫ 2u(yi), on peut considérer que le point est aberrant (attention ! il faut le docu-

menter !) et l’éliminer de la liste.
• Pour visualiser facilement ces différents cas, on représente graphiquement les résidus ei en

fonction des xi, en mettant en évidence les barres d’erreur u(yi) → graphique 2⃝ ci-après.

• On peut aussi calculer les résidus normalisés : ei

u(yi)
, ce qui revient à calculer les z-scores

de chaque yi que l’on souhaite comparer à la valeur estimée avec la régression linéaire.
Pour valider l’adéquation d’un modèle linéaire pour le nuage de points expérimentaux, il
faut que les z-scores soient bien tous inférieurs à 2 → graphique 3⃝ ci-après.

1⃝ 2⃝ 3⃝



METH 2 Page 14 / 16 MPSI1 - 2025/2026

IV Méthode Monte-Carlo pour estimer les incertitudes-types
IV.1 Estimation d’une incertitude-type composée par la méthode Monte-Carlo
Soit une grandeur physique Z définie par une fonction de la variable expérimentale X. La méthode de
Monte-Carlo consiste à calculer un grand nombre de valeurs de Z pour différentes valeurs des X tirées
aléatoirement dans l’intervalle

[
xmes − ∆, xmes + ∆

]
avec ∆ la précision sur x donnée par ∆ =

√
3u(X)

(pour une distribution uniforme) et u(X) l’incertitude-type évaluée lors de la mesure de x. Le script
déduit ensuite de l’ensemble des valeurs zi obtenues la valeur moyenne et l’écart-type sur la distribution.

Remarques
• Dans le cas ou la relation donnant Z fait intervenir plus d’une variable, la méthode reste

la même, il faut simuler des jeux de données des différentes variables pour calculer ensuite
la distribution de valeurs de Z.

• En l’absence d’informations pour savoir de quelle façon générer les valeurs des points
simulés, on choisit une distribution de probabilité uniforme.

On cherche à estimer une grandeur y donnée par y = f(x1, x2, ...) avec les xi des données
résultant d’une mesure et f une fonction connue.
Chaque xi est caractérisé par sa valeur et son incertitude-type u(xi).
① Fixer un nombre N de simulations à réaliser ;

② Pour chaque simulation k, k compris entre 1 et N :
— réaliser un tirage aléatoire pour chaque xi en tenant compte de sa variabilité ;
— utiliser les valeurs de ce tirage et la fonction f pour calculer la valeur yk associée au tirage ;
— sauvegarder cette valeur yk ;

③ Déterminer la moyenne des yk, qui donne la valeur de y, et l’écart-type de la distribution des
yk, qui donne l’incertitude-type de y.

Principe

Exemple : Script Python per-
mettant de déterminer la lar-
geur de la fente et l’incertitude-
type associée lors de l’étude du
phénomène de diffraction
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IV.2 Modélisation affine avec la méthode de Monte-Carlo
Lorsqu’on souhaite évaluer les incertitudes sur les paramètres a et b d’une modélisation affine des gran-
deurs expérimentales x et y (telle que y = ax + b), on peut effectuer une simulation Monte-Carlo en
réalisant un très grand nombre de régressions linéaires sur des séries de points générés aléatoirement à
partir de chaque point xi, yi, à l’aide de leurs incertitudes-types expérimentales u(xi) et u(yi). Rappel :
pour une distribution uniforme de demi-étendue ∆ : u(X) = ∆√

3
.

Les valeurs finales de la pente et de l’ordonnée à l’origine sont les moyennes de toutes leurs valeurs, et
leurs incertitudes-types sont les écarts-types de ces deux ensembles de valeurs.

On souhaite évaluer les incertitudes sur les paramètres a et b d’une modélisation affine des
grandeurs expérimentales x et y (telle que y = ax+b). On note m le nombre de points de mesures.

① Réaliser une régression linéaire unique pour estimer la pente et l’ordonnée à l’origine.

② Fixer un nombre N de simulation très grand (typiquement N = 100000).

③ Créer deux listes vides pour stocker les pentes et les ordonnées à l’origine des régressions.

④ Pour chaque i compris entre 1 et N , réaliser :
— pour chaque j compris entre 1 et m, réaliser un tirage aléatoire d’une valeur de Yj donnée

par une loi de probabilité uniforme entre yj −
√

3 u(yj) et yj +
√

3 u(yj) ;
— pour chaque j compris entre 1 et m, réaliser un tirage aléatoire d’une valeur de Xj donnée

par une loi de probabilité uniforme entre xj −
√

3 u(xj) et xj +
√

3 u(xj) ;
— réaliser une régression linéaire sur cet ensemble (Xj, Yj) puis ajouter dans les listes la pente

et l’ordonnée à l’origine de cette régression.
⑤ Calculer les écarts-types des deux listes des pentes et des ordonnées à l’origine pour obtenir les
incertitudes-types ; tracer sur un graphique la droite obtenue avec la pente moyenne et l’ordonnée
à l’origine moyenne ;

⑥ Superposer sur le même graphique les points de mesures en indiquant leurs incertitudes-type
sous la forme de barres d’erreur.

Principe
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