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Meéthodes 2 : Mesures et incertitudes
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|  Processus de mesure : variabilité des résultats et incertitude-type

.1 Un exemple pour poser le probleme Histogramme de mesures de résistance

Expérience 1 :
On a mesuré la valeur de la résistance d’'un conducteur
ohmique 2000 fois, puis représenté les résultats obtenus sur
I’histogramme ci-contre. Que peut-on dire sur la répartition
des résultats ?

n
)

[
-]

occurences (en %)

w

i

82324 82.526 B2.528 82.530 82332 82.534

valeurs de R (en chm)

Comment expliquer une telle variabilité des résultats?

Histogramme de mesures de résistance

Expérience 2 :

On suit le méme protocole que dans I'expérience 1, mais avec
un autre multimetre, et on obtient I'histogramme ci-contre.
Les résultats sont-ils identiques ?

50

occurences (en %)
e ¥ &

B
53

o

802 L] #2523 B2.524 BL56 83528 BL530
valeurs de R (en ohm)

Quelle est LA valeur de cette résistance ? Toute la problématique de la détermination de
la mesure d’une grandeur est la :

— Quel résultat choisir ?
— Comment estimer sa « précision » 7

— Comment comparer a une valeur de référence ?

[.2  Variabilité des résultats

En sciences expérimentales, le mesurage d’une grandeur physique est un processus complexe, et la
répétition de la mesure conduit naturellement a une dispersion des valeurs observées. Cette variabilité
fait partie du mesurage!

_______________________________________________

Ensemble des valeurs

une valeur donnée par le mesurage
du mesurage de la grandeur X

Plusieurs raisons peuvent expliquer cette variabilité :

— La grandeur a mesurer n’est pas parfaitement définie. Exemples : la largeur d’une table peut varier
suivant la longueur, la surface d’un liquide n’est pas plane, etc.

— Les conditions environnementales (température, pression, etc.) ne sont pas parfaitement stables.
— L’instrument de mesure est source d’erreur (temps de réponse, exactitude, sensibilité).

— L’opérateur ne refait jamais la méme mesure exactement dans les mémes conditions (fatigue,
erreurs de parallaxe, effet de ménisque dans une pipette, etc.)
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“?” Remarque

Une mesure comporte en général plusieurs opérations dont chacune peut étre source de
variabilité. Il sera important de savoir distinguer les sources de variabilité importante de
celles qui sont négligeables.

.3 Erreur et incertitude

e

Erreur de mesure : c’est la différence entre la valeur mesurée et la valeur vraie

Elle possede deux composantes distinctes :

— L’erreur aléatoire : elle provient des variations temporelles et spatiales non prévisibles de

— L’erreur systématique : la mesure est systématiquement décalée par rapport a la valeur

Fidélité et justesse : Une mesure est d’autant plus fidele que 'erreur aléatoire est faible,
d’autant plus juste que l'erreur systématique est faible.

Incertitude de mesure : c’est un parametre qui caractérise la dispersion des valeurs autour de
la valeur moyenne des différentes valeurs mesurées d’'un mesurande. Elle peut étre vue comme
un « doute » sur la valeur mesurée.

¥ Vocabulaire 2

eITeUr = |Tyes — Lyraiel

randeurs d’influence. elle n’a pas d’effet sur la valeur moyenne.
)

vraie. Elle provient d’un effet reconnu d’'une grandeur d’influence (erreur de protocole,
défaut d'un appareil, etc.).

“?” Remarques

e [l ne faut pas confondre erreur et incertitude : une grande incertitude implique une plus
grande chance d’erreur, mais une faible erreur n’implique pas une faible incertitude, ¢a
peut étre un coup de chance!

e En augmentant le nombre de mesurages, on peut réduire les effets de I'erreur aléatoire sur
la précision du résultat, mais on ne réduit pas l'effet de I’erreur systématique.

e Dans le cas d'une erreur systématique non négligeable devant la précision requise, on peut
appliquer une correction au résultat.

4 Application
On a représenté les résultats d'un mesurage par une analogie avec une cible de tir a I'arc (le centre
de la cible représente la valeur varie). Préciser dans chaque cas si la mesure est juste et/ou fidele
ainsi que le(s) type(s) d’erreur présent(s).

°
@ Q
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|.4 Résultat : meilleur estimateur et incertitude-type associée a un mesurage

Donner le résultat du mesurage d’'une grandeur physique X, c’est :

— Donner la meilleure estimation de sa valeur vraie (souvent inconnue, ce qui revient a une absence
de cible dans les schémas de la page 3!)

ET

— Caractériser la dispersion des valeurs que peut prendre cette grandeur physique. Du fait de cette
variabilité intrinseque au processus mesurage, on fait appel a la théorie des probabilités pour décrire
correctement la mesure d’une grandeur, en utilisant la notion d’écart-type que nous expliciterons
plus loin.

- ¥ Méthode N

Résultat d’un mesurage : Le résultat d’'un mesurage n’est pas une valeur unique mais un
ensemble de valeurs numériques, raisonnablement attribuables au mesurande.

Notation : Tout résultat expérimental doit étre accompagné d’une incertitude de mesure
et d’'une unité :
X = Tpes unité  avec wu(X) = ... unité
avec : Tmes = meilleure estimation de la grandeur mesurée (valeur expérimentale dans le cas
d’une mesure unique, ou moyenne arithmétique des valeurs expérimentales)

u(X) = incertitude-type sur la mesure de la grandeur X, qui définit un intervalle de
confiance pour 'estimation de la grandeur mesurée, elle est liée a la notion d’écart-type

@ Remarques
e On écrit l'incertitude-type avec 2 chiffres significatifs (arrondi au supérieur), et le chiffre
significatif de x,es doit coincider avec le dernier chiffre significatif de u(X).

e Ce n’est pas la résolution de I'instrument de mesure qui fixe le nombre de chiffres signifi-
catifs de la valeur mesurée.

4 Application

Les résultats suivants sont-ils écrits correctement ? Si non, les corriger.
R =18,30 avec u(R) = 0,21Q R =11,34Q avec u(R) = 0,162
R =16 avec u(R) = 0,10252 R =18,367% avec u(R) = 0,20Q

[l Différents modes d’'évaluation de l'incertitude-type sur une grandeur

On rencontre deux situations types selon ce qui limite la précision du résultat obtenu :

— Cas n°1 : La précision du résultat est limitée par la répétabilité du protocole expérimental (chaque
observation donne des résultats différents). On réalise alors un traitement statistique de 'incerti-
tude : évaluation de type A.

— Cas n°2 : Certaines expériences n’ont pas de variabilité observée (en reproduisant la mesure,
on retrouve systématiquement le méme résultat), ou il n’est pas possible de reproduire plusieurs
fois le protocole de mesurage. Il faut alors estimer théoriquement la variabilité de la mesure sans
I’observer, on réalise un traitement probabiliste de I'incertitude : évaluation de type B.
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[I.L1  Série de mesures : évaluation de type A de l'incertitude-type

Si on place sur un axe un ensemble {1, ...,xy} de N mesures de la valeur d’une grandeur X, comment

donner le résultat ?
x

Un outil pratique pour visualiser la dispersion des observations réalisées est 1’histogramme, grace auquel
on voit que la répartition des valeurs mesurées suit tres souvent une courbe « en cloche ».

occurence

— — T

T

Cet histogramme « en cloche » peut étre assimilé a une fonction « gaussienne », on dit que x suit une
loi normale (c’est la loi de probabilité la plus utilisée en statistique).

. ¥ Propriétés \

Propriétés d’une loi normale :

— Elle est centrée par rapport a la moyenne, notée T, des valeurs prises par la variable x.

— Son étalement est défini par 1’écart-type o : la probabilité d’obtenir une valeur dans l'in-
tervalle [T — o ; T + o] est de 68% .

, densité de probabilité

L J

Lors d'une série de mesures, en ’absence d’erreur systématique :

— Il n’y a pas de raison pour que les résultats se répartissent plus d’un co6té que de l'autre de la
moyenne arithmétique des résultats, donc la meilleure estimation de la valeur x.; est obtenue en

faisant la moyenne des valeurs mesurées x.s = T

:

r —
‘LIHCS =

— La dispersion des valeurs lors d’une observation est donnée par I’écart-type des mesures (écart-
type de ’échantillon) :

a<x>=J ! :m—x)?

n—li
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¥ Série de mesure — Type A (approche statistique) —————

Si une grandeur X est estimée a partir de n observations répétées indépendantes {1, ..., x,}, et
si 0(X) est I'écart-type expérimental d’'une mesure (obtenu a partir de ces n valeurs), alors :

— Sa meilleure estimation est donnée par la moyenne des n valeurs :

T+ 2T+ ...+,
n

X =7=

— L’incertitude-type u(X) sur son estimation Z vaut I’écart-type de la moyenne :

_ o
u(X) =0(x) = 7
. o : I & 2
avec o(x) = écart-type de I’échantillon = . > (z;—7)
=1z
. J

Y- Remarques
e u(X) dépend de la nature du protocole expérimental mis en ceuvre, du matériel utilisé,

des conditions expérimentales et de I’habileté des expérimentateurs.

e Pour utiliser une incertitude de type A, il faut au minimum 5 a 10 mesures, mais c’est
inutile de dépasser 20 mesures (une augmentation de n diminue 'incertitude-type mais
cette diminution n’est pratiquement plus efficace au dela de n = 10 mesures).

e L’écart-type de I’échantillon o(z) est donné dans le menu statistique de la calculatrice
(« Sz » sur les TI, « sz » sur les Casio, « écart-type échantillon » sur les Numworks).

e Justification qualitative du facteur ﬁ :

Si on effectue n mesures lors du mesu- ———¢—¢ss—o oo oo en oo o 7
rage, T est une moyenne parmi d’autres
possibles : si on refaisait a nouveau n me-

sy

sures, on obtiendrait une autre moyenne. x
Or la distribution de I’ensemble des T
moyennes est bien moins dispersée que "
I'ensemble des mesures uniques (disper- %
sion divisée par y/n), 'estimation & partir O e e O e — X
d’une moyenne est « meilleure » que sur H o(z)
une mesure seule. o(Z)

# Application

On effectue 10 mesures de la résistance R d'un conducteur ohmique, les résultats sont présentés
dans le tableau ci-dessous (valeurs en (2) :

923,6 | 523,5 | 523,4 | 523,5 | 523,6 | 523,4 | 523,5 | 523,5 | 523,6 | 523 .4

Q1. Déterminer (avec le menu « statistiques » de la calculatrice) :
(a) La valeur moyenne de R :
(b) L’écart-type expérimental de la série de mesures :
(¢) L’écart-type sur la moyenne :

Q2. Ecrire correctement le résultat du mesurage :
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[1.2  Mesure unique : évaluation de type B de l'incertitude-type

Dans le cas d’une mesure x isolée (ce qui est le plus fréquent en TP, la plupart du temps il n’est pas
possible de répéter la mesure et il faut se contenter d’un résultat unique!), on utilise aussi la théorie
des probabilités déterminer I'incertitude-type sur la mesure. Il existe différents modeles de densités de
probabilité :

— La loi uniforme sur un intervalle [a, b]
— La loi triangulaire sur un intervalle [a, b] et de maximum en z,.

— La loi Gaussienne (encore appelée loi normale) centrée sur une valeur z,, et d’écart-type o

f(x) f(x) f(x)
| . /\ . A N
a b a Tm, b Tm
Loi uniforme  Loi triangulaire (symétrique) Loi normale

L’incertitude-type est alors donné par I'écart-type de la distribution retenue.

Dans le cas d’une mesure unique, on suppose que la densité de probabilité est a support borné (type
uniforme ou triangulaire symétrique) et on évalue expérimentalement l'intervalle-support [z — A,z + A]
dans lequel on estime qu’on aurait 100% de chances d’obtenir n’importe le résultat de mesure si on
répétait 'expérience un grand nombre de fois.

Pour choisir parmi ces différents modeles bornés, on procede a 1’évaluation de 'erreur possible (souvent
donnée par la précision de I'appareil de mesure, notée A), et on se questionne sur la distribution de
probabilité en dessous de cette précision : la valeur vraie a-t-elle plus de chance de se trouver au centre
de l'intervalle ou pas?

Par habitude, n’ayant aucune information en dessous de la précision A, on estime que la valeur vraie
Tyraje & « autant de chances » de prendre n’importe quelle valeur entre z — A et £ + A donc on considere
une probabilité égale pour toutes les valeurs comprises entre x — A et z + A, donc on privilégie la
distribution uniforme, et I'incertitude-type sera évaluée avec la loi rectangulaire.

¥ Mesure unique — Type B (approche probabiliste)

A
L’incertitude-type dans le cas d’une loi rectangulaire est liée a la précision A par : u(X) = ﬁ

s probabilité (loi de distribution rectangulaire)

~ valeurs de possibles pour la grandeur X

r—A T x4+ A

@ Remarque
Si on consideére une distribution triangulaire symétrique, l'incertitude-type de la mesure

(donné par 'écart-type de la distribution) vaut : u(X) = —.

V6
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—— ¥ Estimation de la précision des appareils de mesure (notée A) ——

— La précision A des instruments de mesure gradués est égale a une demi-graduation.

— La précision d’'un multimetre est donnée par le constructeur de 'appareil :
« n%L +n dgt », ou « n%L + nUR », ce qui signifie : n% de la valeur lue + n digit
1 digit (dgt), ou 1 Unité de Représentation (UR) correspond a l'unité du dernier chiffre
affiché a droite de I’écran, c’est-a-dire la plus petite valeur qui puisse étre affichée sur le
calibre choisi.

— En chimie, la précision est donnée par la tolérance inscrite sur la verrerie (exemple : fiole
jaugée de 500 mL40,25 mL donc A = 0,25 mL).

— Dans le cas ou la source d’erreur prépondérante n’est pas liées a un appareil de mesure,
la précision A est estimée de fagon réaliste, en prenant par exemple la demi-étendue de la
plage de valeurs sur laquelle on est stir d’avoir la valeur vraie.

?" Remarques

e La demi-étendue A doit étre prise la plus faible possible selon les criteres personnels de
I'expérimentateur et selon les conditions de 'expérience, il faut analyser la situation : par
exemple avec un instrument gradué, si la valeur lue tombe « pile »sur une graduation,
on peut réduire A a i de graduation, par contre elle tombe entre deux graduations de
Iinstrument, on choisira A = %graduation, ou si I'expérimentateur est tres peu sir de lui,
il peut prendre A = 1 graduation. Dans tous les cas, justifier le choix fait.

e Pour un appareil a lecture double sur une échelle graduée (régle, balance avec tare, etc.) :
il y a deux causes d’erreur (lors de la mesure du zéro ou du tarage et lors de la lecture
finale). L’erreur due a la résolution va se produire deux fois mais il est probable qu’il y
ait une compensation partielle des erreurs : il faut alors multiplier le demi-intervalle sur
une mesure par v/2 (conséquence de la propagation des incertitudes dans le cas d'une
soustraction, voir page 10).

e Lorsque lors d'une mesure, il peut y a plusieurs sources d’incertitude :

— les erreurs de repérage par un expérimentateur (netteté d’une image, parallaxe, maxi-
mum d’un signal a 'oscilloscope etc.), I'incertitude associée est notée treperage

— les erreurs de lecture (liées aux graduations sur une regle, un rapporteur), 'incertitude
associée est notée Ujecture

— les erreurs liées a un appareil, I'incertitude associée est notée uappareil
Il faudrait, pour étre rigoureux, tenir compte de toutes et calculer :

— 2 2 2
U(X) - \/urcpérage + Ulecture + uapparcﬂ

Cependant, pour simplifier, nous ne garderons que celle dont l'influence est la plus
grande (en général le repérage par I'expérimentateur).

— Dans le cas ou 'on a procédé a une évaluation de type A et de type B, on admet que
I'incertitude-type globale s’écrit :
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4 Applications :

Déterminer dans chaque mesurage la valeur et l'incertitude-type liée a la lecture ou a I'appareil,

puis écrire le résultat de la mesure :

Thermomeétre

Baromeétre (unité mbar)

Fiole jaugée (pleine)

Oscilloscope (mesure de 7T') calibre 10 ms/DIV

Regle
-~ .

Qem 1 Fl 3 b 5 & 7 B WM N 12

Multimeétre utilisé en ampeéremetre (précision : 0,5%L + 0,5 dgt)
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[1.3 Mesure indirecte : évaluation de |'incertitude-type composée

On cherche a obtenir la valeur z d'une grandeur Z a partir de la mesure effective d’autres grandeurs (X
et V) dont elle dépend.

On connait la relation théorique entre les diverses grandeurs Z(X,Y'). L’incertitude sur z est directement
reliée a I'incertitude sur les mesures = et .

e

¥ Incertitude-type composée \

Relation Z=X+Y | Z=X-Y | Z=X XY Z =

==

z Y

Incertitude-type composée | u(Z) = \/u(X)2 +u(Y)? u(Z) = <U’(X)> + <U(Y)>

N

@ Remarques
e Les formules pour le produit simple (Z = X x Y ou Z = %) sont des cas particuliers
dune formule plus générale ou Z est un produit de puissances : Z = X*Y?, pour laquelle

on a :
2 2
u(z) _ JQQ <u<x>> + <u<Y>>
|| x y
e Dans les cas ou la relation Z(X,Y) est plus compliquée que celles données ci-dessus,

I’énoncé vous fournira la formule reliant I'incertitude sur z aux incertitudes de mesure (ou
le logiciel Gum_MC : http://jeanmarie.biansan.free.fr/gum_mc.html).

4 Applications :

Q1. On souhaite déterminer la vitesse des ultrasons dans l'air a ’aide de la relation ¢ = A x f.

On a obtenu par mesure directe :
A= 83mm avec u(\) = 0,6mm et f = 4,0000 x 10*Hz avec u(f) = 58 Hz .
Donner le résultat de ’estimation de c.

Q2. Justifier le facteur v/2 dans I’évaluation de I'incertitude-type d’une longueur mesurée a la régle.
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[l Validité d'un résultat expérimental

[11.1  Compatibilité entre 2 valeurs

Pour valider le résultat d’'un mesurage, on peut comparer la valeur obtenue a la valeur obtenue par un
autre procédé de mesurage (ou par une autre personne), ou a une valeur de référence donnée dans des
tables. Pour cela, on dispose de deux outils : I’écart normalisé et z-score.

r ¥ Ecart normalisé et z-score 2

Ecart normalisé Ey : Z-score 2 :

Pour tester la compatibilité entre 2 valeurs| Pour tester la validité entre une valeur mesu-
mesurées 7, et xy assorties des incertitudes- | Tée Tpnes assortie de I'incertitude-type u(X) et
types u et us : une valeur de référence . :

_ |£L’1 —{23'2| s = |'Tmes_xref’

Vui 4 u3 u(X)

Critere : 2 valeurs sont compatibles si Fy <2 ou z < 2.

En

?" Remarques

e Le choix du seuil est arbitraire mais utilisé dans de nombreux domaines. Il est lié au fait
que l'intervalle [Zmes — 2u(X); Zmes + 2u(X)] est un intervalle de confiance & 95% pour une
distribution qui suit une loi normale (voir courbe page 5). Si z < 2, la compatibilité de
Tmes €6 Trer €8t assurée avec une probabilité d’environ 95%.

e SiI’écart normalisé est supérieur a 2, les résultats ne sont pas compatibles. Il faut chercher
les origines de cette incompatibilité : variabilité des mesures, erreur de manipulation de
calcul, sous-estimation des incertitudes, etc.

Les 3 graphiques ci-dessous représentent des distributions avec en écart normalisé z :

800 800

700
700

1 1]

hk AN
. RN

360 370 380 390 330 340 50 360 370 380 390

700 4

600
600

500 500

400 400

300 300

200 200

100 100

360 Erl]

z=0,3 z=21 z=25,0

4 Application :
La valeur obtenue pour la célérité des ultrasons dans l’application précédente est-elle en accord
avec la valeur tabulée (prise a la méme température) : ciq, = 340m-s—!?
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[11.2  Vérification d'une loi : modélisation linéaire

La vérification d’une loi passe souvent par le tracé d’un graphe, on cherche alors a représenter une
droite afin de conclure facilement sur la validité (ou non) de la loi.

Coefficient de corrélation :
On a représenté ci-dessous les mémes mesures expérimentales, mais avec des incertitudes différentes.
Pour vérifier si la loi étudiée expérimentalement est affine, on effectue une régression linéaire.

120 o 120 - E

599 + 0,042
r=08911

204" X =227

- b=

A =77
K ridun = <20

T I I T T
4 ] .l

=
u
=
o

r
™
i
wn
=}
o

10 d) = L .- e)

40— i/_ f’

20—

Xriaw = 0.0568

0 T T T
20

o
o
=]
o

Pour caractériser I’alignement des points expérimentaux, la calculatrice ou le logiciel (Excel/Openoffice)
propose un coefficient appelé coefficient de corrélation linéaire 7 (ou r?). Il est égal & 1 si la relation
est linéaire et s’en écarte si ce n’est pas le cas. Cependant ce coefficient ne permet pas de déterminer
si écart a 1 est dii aux incertitudes de mesure ou si cet écart est di au fait que la relation n’est pas
linéaire. L’exemple ci-dessus montre que ce coefficient est le méme quelles que soient les incertitudes. Si
I'on peut croire a la pertinence de I’ajustement dans le cas d), il est plus difficile de s’en convaincre dans
les autres cas.

& Le coefficient de corrélation n’est donc pas pertinent pour vérifier une relation linéaire
entre les données.

L’existence d’une droite moyenne ne suffit pas a conclure sur la linéarité de la relation.
Il faut en plus étudier la répartition des points expérimentaux par rapport a la droite
moyenne, et les incertitudes.

s i} Méthode 2

Pour tester une relation linéaire entre 2 grandeurs mesurées, il faut utiliser un logiciel de régres-
sion linéaire intégrant les barres d’incertitude :

— Pour vérifier que les valeurs mesurées sont compatibles avec un modele affine, il faut observer
I’alignement des points sur la droite de régression.

— Pour vérifier que les incertitudes-types sont compatibles avec le modele affine, il faut vérifier
que la droite de régression passe suffisamment pres des points de mesures en tenant compte
des barres d’incertitudes.
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N

a Remarques

de a et b obtenues).

e Lors d’une régression linéaire avec présence de barres d’incertitude, Regressi donne une
incertitude sur les coefficients de la droite d’ajustement a et b. Cette incertitude est une
incertitude élargie correspondant a un niveau de confiance de 95%.

e On peut également utiliser une méthode numérique pour évaluer les incertitudes-types sur
les coefficients a et b du modele. Cette méthode appelée Monte-Carlo consiste a générer des
ensembles de nouvelles mesures (z;,y;) puis réaliser une nouvelle régression linéaire. En
réalisant un grand nombre de fois cette opération, on obtient les valeurs des incertitudes-
types sur les coefficients a et b du modele (en prenant les écarts-types des distributions

Une régression complete ne se limite pas a 'obtention des parametres de la droite de régression : il est
indispensable de valider le modele estimé, c’est-a-dire de vérifier son adéquation aux données analysées.

résidu nul : e; =0;

- ¥ Méthode :

Résidus e : écarts « verticaux » entre les points de mesure et la droite de régression.

analyse des résidus

Ainsi, si la droite de régression a pour équation y = ax + b : a chaque valeur x; on peut associer
I'estimation ax; + b de Y donnée par la droite de régression, et la comparer a la valeur observée
y; : on obtient ainsi le résidu e; = y; — (az; + b).

— Si le point expérimental appartient a la droite de régression (cas « idéal »), on obtient un

— Sinon, on regarde si ces résidus sont bien aléatoirement distribués autour du 0 et si ils
sont bien inférieurs 2 fois la valeur de 'incertitude-type sur ;.

N

“?” Remarques

e On peut aussi calculer les résidus normalisés :

e sie; > 2u(y;), on peut considérer que le point est aberrant (attention! il faut le docu-
menter!) et I'éliminer de la liste.

e Pour visualiser facilement ces différents cas, on représente graphiquement les résidus e; en
fonction des z;, en mettant en évidence les barres d’erreur u(y;) — graphique (2) ci-apres.

———, ce qui revient a calculer les z-scores
| Coulm) o

2 % v .
de chaque ue ’on souhaite comparer a la valeur estimée avec la régression linéaire

Pour valider 'adéquation d’'un modele linéaire pour le nuage de points expérimentaux, il
faut que les z-scores soient bien tous inférieurs a 2 — graphique (3) ci-apres.

-=-- Modele affine .

& Points expérimentaux -
177 4 .

176 4 ! ! _"

= 175 T T :

174 -

173 A P

rsidus

14

ecarts normalises

-1 4

25 30 35 40 45 50 55 60
1A% (en nm?) 1le-6

0
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A (en nm)

®

10 400 450
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350
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®
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IV Méthode Monte-Carlo pour estimer les incertitudes-types

IV.1 Estimation d'une incertitude-type composée par la méthode Monte-Carlo

Soit une grandeur physique Z définie par une fonction de la variable expérimentale X. La méthode de
Monte-Carlo consiste a calculer un grand nombre de valeurs de Z pour différentes valeurs des X tirées
aléatoirement dans l'intervalle {xmes — A, Tpes + A] avec A la précision sur z donnée par A = v/3u(X)
(pour une distribution uniforme) et u(X) l'incertitude-type évaluée lors de la mesure de z. Le script
déduit ensuite de I’ensemble des valeurs z; obtenues la valeur moyenne et 1’écart-type sur la distribution.

‘? Remarques

e Dans le cas ou la relation donnant Z fait intervenir plus d’une variable, la méthode reste
la méme, il faut simuler des jeux de données des différentes variables pour calculer ensuite
la distribution de valeurs de Z.

e En l'absence d’informations pour savoir de quelle facon générer les valeurs des points
simulés, on choisit une distribution de probabilité uniforme.

- ¥y Principe N\
On cherche & estimer une grandeur y donnée par y = f(z1,9,...) avec les x; des données
résultant d’'une mesure et f une fonction connue.
Chaque z; est caractérisé par sa valeur et son incertitude-type u(z;).
@ Fixer un nombre N de simulations a réaliser;
@ Pour chaque simulation k, k compris entre 1 et N :
— réaliser un tirage aléatoire pour chaque x; en tenant compte de sa variabilité;
— utiliser les valeurs de ce tirage et la fonction f pour calculer la valeur ¥, associée au tirage ;
— sauvegarder cette valeur yy, ;

@ Déterminer la moyenne des yg, qui donne la valeur de y, et I’écart-type de la distribution des
Yk, qui donne l'incertitude-type de y.

: import numpy as np
: import matplotlib.pyplot as plt

# Donnes experimentales
lambd = 632.8 # nm
D= 1.5 # m

L= 46 # mm

Lo e R Y

9: # Précisions

10: Deltalambd = 1 # nm
11: DeltaD = 0.01 # m
12: Deltal = 2 # mm

EXemple . Scrlpt Python per- 14: # Fonction de composition
, . 15: def a(lambd,D,L):
mettant de déterminer la lar- 16:  return 2*D*lambd/ (L)
. . 14z
geur de la fente et lﬁncertltude— 18: # Nombre de simulation que vous voulez effectuer
., s s 19: N = 100000
type associée lors de 1’étude du 20:
, N . . 21: # Calculs avec une distribution de probabilité uniforme
phénomene de diffraction 22: long - []
23
24: for i in range(@,N):
25: tlambd = np.random.uniform(lambd-Deltalambd,lambd+Deltalambd)
26: tD = np.random.uniform(D-DeltaD,D+DeltaD)
27 tL = np.random.uniform(L-Deltal,L+Deltal)
28: x=a(tlambd,tD,tL)
29: long.append(a(tlambd,tD,tL))

31: # Calcul et affichage moyenne et écart type
32: moy = np.mean(long)

33: std = np.std(long,ddof=1)

34: print("Moyenne = {:.2f} pum".format(moy))
35: print("Ecart type = {:.2f} pum".format(std))
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V.2 Modélisation affine avec la méthode de Monte-Carlo

Lorsqu’on souhaite évaluer les incertitudes sur les parametres a et b d’'une modélisation affine des gran-
deurs expérimentales x et y (telle que y = ax + b), on peut effectuer une simulation Monte-Carlo en
réalisant un tres grand nombre de régressions linéaires sur des séries de points générés aléatoirement a
partir de chaque point z;,y;, a 'aide de leurs incertitudes-types expérimentales u(x;) et u(y;). Rappel :

pour une distribution uniforme de demi-étendue A : u(X) = 7

Les valeurs finales de la pente et de 'ordonnée a 'origine sont les moyennes de toutes leurs valeurs, et
leurs incertitudes-types sont les écarts-types de ces deux ensembles de valeurs.

s ¢ Principe .

On souhaite évaluer les incertitudes sur les parametres a et b d'une modélisation affine des
grandeurs expérimentales x et y (telle que y = ax+b). On note m le nombre de points de mesures.

@ Réaliser une régression linéaire unique pour estimer la pente et 'ordonnée a 'origine.
@ Fixer un nombre N de simulation tres grand (typiquement N = 100000).
@ Créer deux listes vides pour stocker les pentes et les ordonnées a l'origine des régressions.

@ Pour chaque 7 compris entre 1 et IV, réaliser :
— pour chaque j compris entre 1 et m, réaliser un tirage aléatoire d’'une valeur de Y; donnée
par une loi de probabilité uniforme entre y; — v/3u(y;) et y; + vV3u(y;);
— pour chaque j compris entre 1 et m, réaliser un tirage aléatoire d’'une valeur de X; donnée
par une loi de probabilité uniforme entre z; — v3u(z;) et z; + v3u(z;);
— réaliser une régression linéaire sur cet ensemble (X;,Y;) puis ajouter dans les listes la pente
et I'ordonnée a l'origine de cette régression.

® Calculer les écarts-types des deux listes des pentes et des ordonnées a ’origine pour obtenir les
incertitudes-types ; tracer sur un graphique la droite obtenue avec la pente moyenne et I’ordonnée
a ’origine moyenne ;

® Superposer sur le méme graphique les points de mesures en indiquant leurs incertitudes-type
sous la forme de barres d’erreur.
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