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SIG2 : Etude de phénomeénes ondulatoires

En 1690, Christian Huygens propose une théorie ondulatoire de la lumiere et entre en
conflit avec Newton, qui penche pour une nature corpusculaire. Au début du XIX¢ siecle,
Thomas Young (médecin, philosophe, botaniste et physicien anglais), reprend 'idée de
Huygens qu’il justifie par des expériences de diffraction en obtenant ce qu’il nomme des in-
terférences. C’est la théorie électromagnétique énoncée par Maxwell en 1873 qui confirme

le caractere ondulatoire de la lumieére.
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A savoir par v

4

4
4
4

Phénomene de diffraction : conditions d’existence, formule, exemples.

Phénomene d’interférences : origine physique, déphasage des deux ondes, conditions d’interférences
destructives/constructives.

Expérience des trous d’Young : description, formule de I'interfrange.

Onde stationnaire : forme mathématique, évolution temporelle, modes propres.

A savoir faire <

Exprimer les conditions d’interférences constructives ou destructives de 2 ondes issues dé 2 sources
ponctuelles en phase dans un milieu de propagation homogene.

Trous d’Young : déterminer les lieux d’interférences constructives et destructives, relier le déphasage
entre les 2 ondes a la différence de chemin optique, établir I'expression de la différence de chemin
optique linéarisée et celle de I'interfrange.

Onde stationnaire sur une corde : établir la somme des ondes incidente et réfléchie et la mettre sous
la forme d’une onde stationnaire, établir les fréquences des modes propres, expliquer le lien avec les
instruments de musique.
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| Phénomene de diffraction (rappel OG1)

[.1 Relation de la diffraction

<6 Expérience — TP T'°

On a évoqué le phénomene de diffraction des ondes lumineuse (OG1), mais ce phénomene ne s’applique
pas qu’a la lumiere, il s’applique a tous les phénomeénes ondulatoires : les ondes acoustiques, la houle
sur la mer, les ondes électromagnétiques, etc. C’est ce phénomene qui permet de recevoir le signal émis
par une source sans étre en face de celle-ci.

s ¥ Définition \

Diffraction : modification des propriétés d’'une onde lorsqu’on limite sa propagation par
un obstacle. Ce phénomene se manifeste généralement par une redistribution de l'intensité
émergente dans certaines directions privilégiées. C’est un phénomene tres général qui met en
évidence le caractere ondulatoire d’'un phénomene.

Exemple : diffraction d’une onde mécanique observée grace a une cuve a ondes :

- ¥ Formule \

Les lois de 'optique géométrique ne sont pas respectées au niveau d’un obstacle qui masque
partiellement un rayon lumineux. Ce phénomene est appelé diffraction.

Formule de la diffraction : Si 'onde incidente est plane et monochromatique de longueur
d’onde A, l'onde diffractée par un obstacle de taille caractéristique a, est un faisceau dont la
dispersion angulaire perpendiculairement a la fente est :

A
sin(f) ~ —
(0)~ =
avec : # = valeur de 'angle de diffraction pour la premiere extinction
A = longueur d’onde en m
a = taille de 'ouverture en m

Le phénomene de diffraction n’est perceptible que si 'angle 6 n’est pas trop petit. Si a > A
c’est 'approximation de l'optique géométrique qui reste valide.
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“?” Remarques
Pour les observations en optique :

e La tache centrale a une largeur angulaire 26.

Les taches secondaires sont deux fois moins larges que la tache centrale.

La relation s’écrit avec un signe « = » si 'ouverture est rectangulaire de largeur a.

A
Si obstacle a une forme circulaire de diametre D, la relation est sin(f) = 1,22—.

D
Pour les ondes lumineuses, le phénomene de diffraction se produit pour des obstacles de

taille jusqu’a une centaine de fois A, soit de 'ordre de 1 a 100 pm.

.2 Conséquences de la diffraction

En optique, I'ouverture (= l'obstacle) est constituée par la monture de I'objectif. Lorsqu’on réalise des
observations a grande distance (ou dans le plan focal d’une lentille convergente), on observe une tache cir-
culaire brillante appelée tache d’Airy, au lieu d’une image ponctuelle. Cela limite le pouvoir de résolution
des instruments. On a donc intérét a utiliser des lentilles de grand diametre pour maximiser a et limiter 6.

Pour les ondes sonores audibles, on a calculé dans SIG1l que 17mm < A < 17m , donc la diffraction
intervient constamment avec les objets du quotidien !

I Phénomeéne d'interférences

[1.1 Mise en évidence du phénomene

4@ Simulation 1 : ondes sonores (+ TP 16)

https://phet.colorado.edu/sims/html/sound-waves/latest/sound-waves_all.html?locale=fr
On branche 2 haut-parleurs sur le méme générateur de signaux de méme fréquence, et on place un
récepteur face aux émetteurs.

Q1. Qu’observe-t-on lorsque le récepteur se déplace parallelement a la droite reliant les 2 émetteurs ?

Q2. Comment s’appelle le phénomene observé ici?

Q3. En terminale, avec quels autres types d’ondes avez-vous déja observé ce phénomene ? Quel est
le nom de cette expérience ?

@ Simulation 2 : cuve a ondes

https://phyanim.sciences.univ-nantes.fr/Ondes/cuve_ondes/index.php
Une cuve a ondes est remplie d’un film d’eau. Un vibreur permet de générer une onde de surface
en soufflant périodiquement a la surface de I'eau.

Q1. Quelle est la forme de 'onde générée par une seule source ?

Q2. Donner deux grandeurs qui caractérisent cette onde.

Q3. Qu’observe-t-on lorsqu’on utilise deux sources (qui vibrent a la méme fréquence) ?



https://phet.colorado.edu/sims/html/sound-waves/latest/sound-waves_all.html?locale=fr
https://phyanim.sciences.univ-nantes.fr/Ondes/cuve_ondes/index.php
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- ¥ Définition \

Interférences : Lorsque deux ondes de méme nature et synchrones (= de méme fréquence)
parviennent en un point M de I'espace, elles se superposent : leurs signaux s’additionnent. C’est
le phénomene d’interférences.

L’amplitude de I’onde résultante de la superposition de plusieurs ondes est différente de la somme

des amplitudes individuelles.
. J

[1.2  Notion de déphasage entre deux ondes

Soient deux sources synchrones émettant des ondes de méme pulsa-
w

tion w, de pulsation spatiale (= nombre d’onde) k = —, de phases
c

a lorigine des temps g et @ et d’amplitudes respectives Sy, et
Som. Au point M, on observe la superposition des deux ondes.

e Donner I'expression du signal issu de la source E; en un point M de l'espace distant d’'une distance
ElM de Sl .

e Méme question pour le signal issu de la source FE.

e Les deux ondes qui se superposent en M sont déphasées car le chemin parcouru par chacune des deux
ondes entre la source et M est différent. Que vaut, au point M, le déphasage de I'onde issue de Ej
par rapport a celle issue de Ey (p2/1) 7

Valeurs remarquables du déphasage :

® o1 =0 (ou2kmaveck €Z):

y
A
200 +

! ! ! I ! ! ! I ! 1 ! 1 ! 1 i
T T T T T T T T T T T i
2 4 5 7 9 10 12

14 15 temps(ms)

s1 et s9 ont leurs maxima simultanément, les signaux sont dits en phase. L’amplitude résultante est
supérieure a celle de s; et celle de so, on parle d’interférences contsructives.

® vy =m (oum+2kmaveck € Z) :

A
200 +-

100 —

15 temps(ms)

s1 est maximal quand s, est minimal (et inversement), les signaux sont dits en opposition de
phase. L’amplitude résultante est inférieure a celle de s; et a celle de s, on parle d’interférences
destructives.
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11.3 Conditions d'interférences constructives et destructives
Le signal résultant est la somme des deux signaux en M et s’écrit en M, at: s(M,t) = s1(M,t)+s2(M, ).
a) Impact du déphasage sur I'amplitude résultante

e Que vaut I'amplitude de I'onde résultante lorsque les deux signaux sont en phase ?
e Méme question lorsque les signaux sont en opposition de phase?

e Que peut-on dire de ces valeurs quand les deux signaux interferent ont une amplitude égale (Sy,, =

Som) 7

b) Somme de deux ondes en tout point M

ﬁ Démonstration

Déterminer I'expression du signal résultant de la superposition des ondes s; et sy en M, en fonction
de ¢ et . Utiliser la représentation de Fresnel pour déterminer son amplitude.

- vr Représentation de Fresnel \

La représentation de Fresnel est la représentation graphique de signaux dépendant du
temps de fagon sinusoidale — animation ici

A tout signal sinusoidal s(t) = S,, cos(wt 4+ ¢), on associe un
vecteur S dans le plan cartésien (Ozxy) :

e de norme H?H =S,

L —

e et faisant un angle de wt+ ¢ avec 'axe (Ox) : (17;, ?) =wt+y

Le vecteur S tourne dans le plan (Ozy), autour de I'axe (Oz), a la vitesse angulaire w, il fait

27
un tour en 7' = —. Utilisation pour sommer des signaux sinusoidaux :

w
Y,
S+
(;; () En notant 3 = ST+ s_2>, ona: s?=s?+ 55+ 2518 cos(py — 1)
@1@0
O x



https://www.geogebra.org/m/ExSbMxXt
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ﬁ Démonstration

Déterminer dans quelles conditions 'amplitude résultante est maximale et déterminer son expres-
sion. Vérifier la cohérence avec la condition établie précédemment.

4 Démonstration
Mémes questions pour 'amplitude minimale.

g Démonstration

Déterminer 'expression de s(t) et son amplitude si les 2 ondes s; et sy ont méme amplitude (soit
Stm = Sam = A).

Rappel : cos(p) + cos(q) = 2 cos <p2+q> SO <p2—q)
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- ¥ Définitions \

Interférences constructives et destructives : On parle d’interférences

— constructives en M quand 'amplitude S,, du signal s(M,t) résultant en M est maximale;
— destructives en M quand I'amplitude S,, du signal s(M,t) résultant en M est minimale.

Différence de marche : Lorsque 2 ondes se propagent depuis leurs sources jusqu’en un point
M | elles parcourent des chemins différents de longueurs respectives d; (M) et dy( M), dépendant
de la position du point M considéré.

La différence de marche en M entre les deux signaux est définie par : §(M) = do(M)—dy (M)

s ¥ Formule \

Lorsque les deux ondes proviennent d’une méme source (ce
qui est quasiment toujours le cas), alors vo1 = @o2.

Les deux ondes étant passées par des chemins différents, il
existe une différence de marche d5/;(M) et un déphasage
A1 (M) reliés par :

2
Apoyi (M) = —kE;M+kE M = == (ExM — EyM), soit :
=05/1(M)
2m
Apyp (M) = —752/1(]\/[)
- J
6 ¥ Formules <

— Conditions d’interférences constructives en M : le déphasage entre les deux ondes est
un multiple de 27 (& la différence de marche est un multiple de la longueur d’onde) :

Ay (M) =2pm & 6(M)=pA, pel

— Conditions d’interférences destructives en M : le déphasage entre les deux ondes est
un multiple impair de 7 (< la différence de marche est un multiple impair de la demie
longueur d’onde) :

A
Apoi (M) = (2p+ 1) & 5(M)=(2p+1)5 ., pEZ

L J/

[1.4 Cas des trous d'Young

Un faisceau de lumiere éclaire une plaque percée de deux trous : ils diffractent la lumiere et se com-
portent comme deux sources ponctuelles. On observe sur un écran parallele a la plaque :

Sng =a
oint
source

[ > 2

S /)—mj/

\\W St =

<

8

Nl

e,
~
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L’indice optique de I'air n étant tres proche de 1, on considere que les ondes lumineuses se propagent a

la vitesse v = — ~ c.
n

Pour déterminer I'expression de la différence de marche entre les ondes issues des sources S; et Ss
en M, on utilise la formule d’approximation :

VIFen1+s

4 Démonstration
Déterminer la différence de chemin optique (= différence de marche car on considére v =~ ¢) au
point M(z,y) de 'écran, avec a < D , z < D et y < D.

;’—' M

[V]fS]

51

N
|
S]]~
i

d
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s ¥ Formule \

écran

I D 1

Dans le dispositif des trous d’Young placés sur la droite (Ox), la différence de chemin optique
au point M, de coordonnées (x,y, D) vaut :

@ Remarque

Les récepteurs de I'onde lumineuse (ceil ou photorécepteur), ayant un temps de réponse trop
long pour suivre ’évolution temporelle des variations de 'onde lumineuse, ils sont sensibles
a l'intensité lumineuse, qui est proportionnelle au carré de 'amplitude de ’onde lumineuse
I au point considéré, telle que :

I= ;KAQ(M)

avec s(M,t) = A(M) cos(wt + p(M)) et K une constante multiplicative.

Les zones d’interférences constructives, ou 'amplitude est maximale, sont donc des zones
brillantes, et les zones d’interférences destructives, ou I'amplitude est minimale, sont donc
des zones sombres.

# Démonstration
Utiliser la condition d’interférences constructives pour déterminer la position des franges brillantes.

# Démonstration
En déduire I'interfrange (= distance entre deux franges brillantes consécutives).
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s ¥ Formule \

55
9 N :
g %2l /

La figure d’interférence produite par les trous d’Young S; et S5 est formée de franges rectilignes,
perpendiculaires a 5195, et régulierement espacées de 'interfrange :

.oAxd
/L:

a

avec : a = 515 en m
D = distance entre le plan contenant les sources et 1’écran en m
A = longueur d’onde de la radiation lumineuse en m
(=~ sa longueur d’onde dans le vide Ay car n,;, ~ 1)

N

?” Remarque

C’est grace a la diffraction que 'on obtient un champ d’interférence dans lequel on observe
des franges. Une description complete du phénomene observé fait donc appel a la théorie de
la diffraction. Il en ressort que la figure d’interférence observée est modulée par la figure de
diffraction d’un trou (dans le cas des trous d’Young) ou d’une fente (dans le cas des fentes
d’Young). L’interfrange est inchangée. Le résultat des calculs reste donc valable.

o

1 trou o 2 trous ¢

[l Ondes mécaniques stationnaires

[11.L1  Onde le long d'une corde fixée a ses deux extrémités

<§ Vidéo + simulation :
https://www.youtube.com/watch?v=aVCqq5AkePI
https://www.youtube.com/watch?v=LTWHxZ6Jv]js
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Ondes/ondes_stationnaires/
stationnaires.php


https://www.youtube.com/watch?v=aVCqq5AkePI
https://www.youtube.com/watch?v=LTWHxZ6Jvjs
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Ondes/ondes_stationnaires/stationnaires.php
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Ondes/ondes_stationnaires/stationnaires.php
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On considére une corde fixée a ses deux extrémités (en x = 0 et © = L), le long de laquelle deux
ondes progressives sinusoidales de méme amplitude se propagent en sens inverse :

— une onde n°1 (=onde incidente) se propageant selon (),
— une onde n°2 (=onde réfléchie) qui se propage selon (—77;), provenant de la réflexion de 'onde
incidente lorsqu’elle arrive en z = L.

Q1. Comment est définie une onde progressive ?

Q2. L’onde résultante vérifie-t-elle ces propriétés ? Pourquoi 'appelle-t-on « onde stationnaire » 7

¥ Définitions 2

Noeuds et ventres d’une onde stationnaire : Lorsque deux ondes sinusoidales de méme
fréquence, de méme amplitude se propagent en sens inverse, leur superposition donne naissance
a une onde stationnaire sinusoidale, que l'on peut caractériser par I'existence :

— de noeuds de vibration qui sont des points, notés N, de I'espace qui ne vibrent jamais,
c’est-a-dire tels que, a tout instant, s(zy,t) = 0.

— de ventres de vibration qui sont des points, notés V', de l'espace ou la perturbation
(vibration) y est & chaque instant maximale par rapport aux autres points de la corde.

L’existence de noeuds et de ventres de vibration est une propriété caractéristique
des ondes stationnaires.

fg Démonstration

Q1.

Q2.

Q3.

Q4.

Q5.

Comment écrire le signal associé a une onde stationnaire ?

L’onde incidente progressive sinusoidale se propage selon (+u_>m) Le signal associé s’écrit :

Le milieu étant limité, il existe une onde réfléchie se propageant selon (—'sz) ). Le signal associé s’écrit :

Le signal de I'onde résultante, s’écrit :

b —b
Utiliser la formule de trigonométrie cos(a) 4 cos(b) = 2 cos (a; ) oS (a 5 ) pour poursuivre le

calcul :

Que peut-on dire des variables temporelle et spatiale dans ’expression obtenue ? Quelle est la consé-
quence de cela sur la vibration des points de 1'espace ?
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r ¥ Formule 2

Ecritue mathématique d’une onde stationnaire :

— Les signaux associés aux ondes stationnaires s’écrivent sous la forme d’un produit d’une
fonction de la position et d’'une fonction du temps :

s(x,t) = f(x) x g(t)
— Les signaux associés aux ondes stationnaires sinusoidales s’écrivent sous la forme

s(x,t) = Spcos (wt + go) cos (k:x + ib)

Comparaison d’une onde progressive et d’une onde stationnaire au cours du temps :

1.00 4 ——- t=0
------ t=3T/16
0.75 — t=T/4
t=5T/16
0.50 —- t=7T/16
= — t=T12
7
©0.25
0
3
3 0.00
U
I
T —-0.25 1
x
=
—0.50
—-0.75 4
~1.00
1.00 -—- t=0
------ t=3T/16
0.75 - — t=T/4
t=5T/16
% 050 —-- t=7T/16
= — t=T/2
1%
s 025
o
=
3 0.00 A
T
S
< -0.251
=
X
£ -0.50 4
-0.75 4
-1.00 -

[11.2 Modes propres

La corde étudiée est fixée a ses deux extrémités, en x = 0 et x = L, ce qui impose les conditions
s(x =0,t)

. =0
aux limites V ¢ sz =1Lt = 0

, traduisant le fait qu’il n’y a aucun déplacement vertical aux deux

extrémités.

4 Démonstration
Fréquence des modes propres
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Le signal existant sur la corde s’écrit s(x,t) = Sy cos (wt + 90) CcoS (k‘x + ¢>

T
— Montrer que la condition aux limites en x = 0 impose ¢ = j:E[Zﬂ.

— Montrer que la condition aux limites en # = L impose une quantification du vecteur d’onde k (c’est-
a~dire que seules certaines valeurs discretes sont possibles).

— En déduire que la longueur d’onde, la pulsation et la fréquence sont également quantifiées en précisant

les valeurs permises.

— Représenter (en fonction de x) les trois premiers modes propres, localiser les nceuds et les ventres.

— Déterminer les distances séparant deux noeuds (ou deux ventres) consécutifs.
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- ¥ Propriétés \
Longueurs d’onde et fréquences des modes propres : Pour une corde fixée a ses deux
extrémités, les conditions aux limites imposent une quantification des longueurs d’onde et des
fréquences, avec n € N* :

p ¥v Méthode N

Comment retrouver facilement les fréquences des modes propres ?

n=1 < >
©® Représenter les 3 premiers modes propres de la

corde fixée a ses deux extrémités (ci-contre). L=X/2
® Repérer le lien entre la longueur d’onde et n=2 @@
la longueur de la corde pour ces trois premiers L=\

modes, puis généraliser au mode n, afin d’avoir \,,.
A3 =2L/3

c
® Utiliser la relation f, = 3 Pour en déduire les n—3 @
fréquences des modes propr%s.

L= X3+ A3/2 = 3X3/2

[11.3  Lien avec les instruments de musique

Les cordes de violon et de guitare sont fixées a leurs deux extrémités. Lorsque le musicien excite la corde,
en la frottant avec un archet pour le violon, en la grattant pour la guitare, un son est émis, mais le
musicien ne sélectionne pas un mode propre donné. La vibration engendrée n’est pas un mode propre
mais une superposition des différents modes propres possibles. Ci-dessous, sont représentés les spectres
d’un la émis par une guitare et un violon. On constate la présence d’un grand nombre d’harmoniques,
tous multiples de la fréquence du fondamental.

3
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