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SIG2 : Étude de phénomènes ondulatoires

En 1690, Christian Huygens propose une théorie ondulatoire de la lumière et entre en
conflit avec Newton, qui penche pour une nature corpusculaire. Au début du XIXe siècle,
Thomas Young (médecin, philosophe, botaniste et physicien anglais), reprend l’idée de
Huygens qu’il justifie par des expériences de diffraction en obtenant ce qu’il nomme des in-
terférences. C’est la théorie électromagnétique énoncée par Maxwell en 1873 qui confirme
le caractère ondulatoire de la lumière.
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À savoir par
✓ Phénomène de diffraction : conditions d’existence, formule, exemples.
✓ Phénomène d’interférences : origine physique, déphasage des deux ondes, conditions d’interférences

destructives/constructives.
✓ Expérience des trous d’Young : description, formule de l’interfrange.
✓ Onde stationnaire : forme mathématique, évolution temporelle, modes propres.

À savoir faire
✓ Exprimer les conditions d’interférences constructives ou destructives de 2 ondes issues dé 2 sources

ponctuelles en phase dans un milieu de propagation homogène.
✓ Trous d’Young : déterminer les lieux d’interférences constructives et destructives, relier le déphasage

entre les 2 ondes à la différence de chemin optique, établir l’expression de la différence de chemin
optique linéarisée et celle de l’interfrange.

✓ Onde stationnaire sur une corde : établir la somme des ondes incidente et réfléchie et la mettre sous
la forme d’une onde stationnaire, établir les fréquences des modes propres, expliquer le lien avec les
instruments de musique.



SIG2 Page 2 / 14 MPSI1 - 2025/2026

I Phénomène de diffraction (rappel OG1)
I.1 Relation de la diffraction

Expérience → TP Tle

On a évoqué le phénomène de diffraction des ondes lumineuse (OG1), mais ce phénomène ne s’applique
pas qu’à la lumière, il s’applique à tous les phénomènes ondulatoires : les ondes acoustiques, la houle
sur la mer, les ondes électromagnétiques, etc. C’est ce phénomène qui permet de recevoir le signal émis
par une source sans être en face de celle-ci.

Diffraction : modification des propriétés d’une onde lorsqu’on limite sa propagation par
un obstacle. Ce phénomène se manifeste généralement par une redistribution de l’intensité
émergente dans certaines directions privilégiées. C’est un phénomène très général qui met en
évidence le caractère ondulatoire d’un phénomène.
Exemple : diffraction d’une onde mécanique observée grâce à une cuve à ondes :

Définition

Les lois de l’optique géométrique ne sont pas respectées au niveau d’un obstacle qui masque
partiellement un rayon lumineux. Ce phénomène est appelé diffraction.

Formule de la diffraction : Si l’onde incidente est plane et monochromatique de longueur
d’onde λ, l’onde diffractée par un obstacle de taille caractéristique a, est un faisceau dont la
dispersion angulaire perpendiculairement à la fente est :

sin(θ) ≈ λ

a

avec : θ = valeur de l’angle de diffraction pour la première extinction
avec : λ = longueur d’onde en m
avec : a = taille de l’ouverture en m

θ
a

Le phénomène de diffraction n’est perceptible que si l’angle θ n’est pas trop petit. Si a ≫ λ
c’est l’approximation de l’optique géométrique qui reste valide.

Formule
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Remarques
Pour les observations en optique :
• La tache centrale a une largeur angulaire 2θ.
• Les taches secondaires sont deux fois moins larges que la tache centrale.
• La relation s’écrit avec un signe « = » si l’ouverture est rectangulaire de largeur a.

• Si l’obstacle a une forme circulaire de diamètre D, la relation est sin(θ) = 1, 22 λ
D

.

• Pour les ondes lumineuses, le phénomène de diffraction se produit pour des obstacles de
taille jusqu’à une centaine de fois λ, soit de l’ordre de 1 à 100 µm.

I.2 Conséquences de la diffraction
En optique, l’ouverture (= l’obstacle) est constituée par la monture de l’objectif. Lorsqu’on réalise des
observations à grande distance (ou dans le plan focal d’une lentille convergente), on observe une tache cir-
culaire brillante appelée tache d’Airy, au lieu d’une image ponctuelle. Cela limite le pouvoir de résolution
des instruments. On a donc intérêt à utiliser des lentilles de grand diamètre pour maximiser a et limiter θ.

Pour les ondes sonores audibles, on a calculé dans SIG1 que 17 mm < λ < 17 m , donc la diffraction
intervient constamment avec les objets du quotidien !

II Phénomène d’interférences
II.1 Mise en évidence du phénomène

https://phet.colorado.edu/sims/html/sound-waves/latest/sound-waves_all.html?locale=fr
On branche 2 haut-parleurs sur le même générateur de signaux de même fréquence, et on place un
récepteur face aux émetteurs.
Q1. Qu’observe-t-on lorsque le récepteur se déplace parallèlement à la droite reliant les 2 émetteurs ?

Q2. Comment s’appelle le phénomène observé ici ?
Q3. En terminale, avec quels autres types d’ondes avez-vous déjà observé ce phénomène ? Quel est

le nom de cette expérience ?

Simulation 1 : ondes sonores (+ TP 16)

https://phyanim.sciences.univ-nantes.fr/Ondes/cuve_ondes/index.php
Une cuve à ondes est remplie d’un film d’eau. Un vibreur permet de générer une onde de surface
en soufflant périodiquement à la surface de l’eau.
Q1. Quelle est la forme de l’onde générée par une seule source ?

Q2. Donner deux grandeurs qui caractérisent cette onde.

Q3. Qu’observe-t-on lorsqu’on utilise deux sources (qui vibrent à la même fréquence) ?

Simulation 2 : cuve à ondes

https://phet.colorado.edu/sims/html/sound-waves/latest/sound-waves_all.html?locale=fr
https://phyanim.sciences.univ-nantes.fr/Ondes/cuve_ondes/index.php
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Interférences : Lorsque deux ondes de même nature et synchrones (= de même fréquence)
parviennent en un point M de l’espace, elles se superposent : leurs signaux s’additionnent. C’est
le phénomène d’interférences.
L’amplitude de l’onde résultante de la superposition de plusieurs ondes est différente de la somme
des amplitudes individuelles.

Définition

II.2 Notion de déphasage entre deux ondes

Soient deux sources synchrones émettant des ondes de même pulsa-
tion ω, de pulsation spatiale (= nombre d’onde) k = ω

c
, de phases

à l’origine des temps φ01 et φ02 et d’amplitudes respectives S1m et
S2m. Au point M , on observe la superposition des deux ondes. +

d1(M
) = E1M

E1 +

d 2(
M

) =
E

2M

E2

M

• Donner l’expression du signal issu de la source E1 en un point M de l’espace distant d’une distance
E1M de S1 :

• Même question pour le signal issu de la source E2.

• Les deux ondes qui se superposent en M sont déphasées car le chemin parcouru par chacune des deux
ondes entre la source et M est différent. Que vaut, au point M , le déphasage de l’onde issue de E2
par rapport à celle issue de E1 (φ2/1) ?

Valeurs remarquables du déphasage :
• φ2/1 = 0 (ou 2 k π avec k ∈ Z) :

s1 et s2 ont leurs maxima simultanément, les signaux sont dits en phase. L’amplitude résultante est
supérieure à celle de s1 et celle de s2, on parle d’interférences contsructives.

• φ2/1 = π (ou π + 2 k π avec k ∈ Z) :

s1 est maximal quand s2 est minimal (et inversement), les signaux sont dits en opposition de
phase. L’amplitude résultante est inférieure à celle de s1 et à celle de s2, on parle d’interférences
destructives.
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II.3 Conditions d’interférences constructives et destructives
Le signal résultant est la somme des deux signaux en M et s’écrit en M , à t : s(M, t) = s1(M, t)+s2(M, t).
a) Impact du déphasage sur l’amplitude résultante
• Que vaut l’amplitude de l’onde résultante lorsque les deux signaux sont en phase ?

• Même question lorsque les signaux sont en opposition de phase ?

• Que peut-on dire de ces valeurs quand les deux signaux interfèrent ont une amplitude égale (S1m =
S2m) ?

b) Somme de deux ondes en tout point M

Déterminer l’expression du signal résultant de la superposition des ondes s1 et s2 en M , en fonction
de φ1 et φ2. Utiliser la représentation de Fresnel pour déterminer son amplitude.

Démonstration

La représentation de Fresnel est la représentation graphique de signaux dépendant du
temps de façon sinusoïdale → animation ici

À tout signal sinusoïdal s(t) = Sm cos(ωt + φ), on associe un
vecteur −→

S dans le plan cartésien (Oxy) :
• de norme

∥∥∥−→S ∥∥∥ = Sm

• et faisant un angle de ωt+φ avec l’axe (Ox) : ̂(−→ux,
−→
S
)

= ωt+φ

x
O

y

Sm

−→
S (t)

s(t)

ωt+ φ −→
S (t = 0)

s(0)
φ

Le vecteur −→
S tourne dans le plan (Oxy), autour de l’axe (Oz), à la vitesse angulaire ω, il fait

un tour en T = 2π
ω

. Utilisation pour sommer des signaux sinusoïdaux :

xO

y

−→s1(t)

−→s2(t)

φ1

φ2

−→s1(t) + −→s2(t)
En notant −→s = −→s1 + −→s2 , on a : s2 = s2

1 + s2
2 + 2s1s2 cos(φ2 − φ1)

Représentation de Fresnel

https://www.geogebra.org/m/ExSbMxXt
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Déterminer dans quelles conditions l’amplitude résultante est maximale et déterminer son expres-
sion. Vérifier la cohérence avec la condition établie précédemment.

Démonstration

Mêmes questions pour l’amplitude minimale.
Démonstration

Déterminer l’expression de s(t) et son amplitude si les 2 ondes s1 et s2 ont même amplitude (soit
S1m = S2m = A).
Rappel : cos(p) + cos(q) = 2 cos

(
p+ q

2

)
cos

(
p− q

2

)
Démonstration
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Interférences constructives et destructives : On parle d’interférences
— constructives en M quand l’amplitude Sm du signal s(M, t) résultant en M est maximale ;
— destructives en M quand l’amplitude Sm du signal s(M, t) résultant en M est minimale.

Différence de marche : Lorsque 2 ondes se propagent depuis leurs sources jusqu’en un point
M , elles parcourent des chemins différents de longueurs respectives d1(M) et d2(M), dépendant
de la position du point M considéré.
La différence de marche en M entre les deux signaux est définie par : δ(M) = d2(M)−d1(M)

Définitions

Lorsque les deux ondes proviennent d’une même source (ce
qui est quasiment toujours le cas), alors φ01 = φ02.
Les deux ondes étant passées par des chemins différents, il
existe une différence de marche δ2/1(M) et un déphasage
∆φ2/1(M) reliés par :
∆φ2/1(M) = −kE2M+kE1M = −2π

λ
(E2M − E1M︸ ︷︷ ︸

=δ2/1(M)

), soit :

∆φ2/1(M) = −2π
λ
δ2/1(M)

+

d1(M
) = E1M

E1 +

d 2(
M

) =
E

2M

E2

M
•

Formule

— Conditions d’interférences constructives en M : le déphasage entre les deux ondes est
un multiple de 2π (⇔ la différence de marche est un multiple de la longueur d’onde) :

∆φ2/1(M) = 2p π ⇔ δ(M) = p λ , p ∈ Z

— Conditions d’interférences destructives en M : le déphasage entre les deux ondes est
un multiple impair de π (⇔ la différence de marche est un multiple impair de la demie
longueur d’onde) :

∆φ2/1(M) = (2p+ 1)π ⇔ δ(M) = (2p+ 1)λ2 , p ∈ Z

Formules

II.4 Cas des trous d’Young
Un faisceau de lumière éclaire une plaque percée de deux trous : ils diffractent la lumière et se com-
portent comme deux sources ponctuelles. On observe sur un écran parallèle à la plaque :

•
S

point
source

éc
ra

n

M(x, y)

D

z

x

⊙
y

S2

S1

S1S2 = a
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L’indice optique de l’air n étant très proche de 1, on considère que les ondes lumineuses se propagent à
la vitesse v = c

n
≈ c.

Pour déterminer l’expression de la différence de marche entre les ondes issues des sources S1 et S2
en M , on utilise la formule d’approximation :

√
1 + ε ≈ 1 + ε

2

Déterminer la différence de chemin optique (= différence de marche car on considère v ≈ c) au
point M(x, y) de l’écran, avec a ≪ D , x ≪ D et y ≪ D.

Démonstration



SIG2 Page 9 / 14 MPSI1 - 2025/2026

éc
ra

n

M(x, y)

D

O
z

x

⊙
y

S2

S1

S1S2 = a

Dans le dispositif des trous d’Young placés sur la droite (Ox), la différence de chemin optique
au point M , de coordonnées (x, y,D) vaut :

δ ≈ ax

D

Formule

Remarque
Les récepteurs de l’onde lumineuse (œil ou photorécepteur), ayant un temps de réponse trop
long pour suivre l’évolution temporelle des variations de l’onde lumineuse, ils sont sensibles
à l’intensité lumineuse, qui est proportionnelle au carré de l’amplitude de l’onde lumineuse
I au point considéré, telle que :

I = 1
2KA

2(M)

avec s(M, t) = A(M) cos(ωt+ φ(M)) et K une constante multiplicative.
Les zones d’interférences constructives, où l’amplitude est maximale, sont donc des zones
brillantes, et les zones d’interférences destructives, où l’amplitude est minimale, sont donc
des zones sombres.

Utiliser la condition d’interférences constructives pour déterminer la position des franges brillantes.
Démonstration

En déduire l’interfrange (= distance entre deux franges brillantes consécutives).
Démonstration
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La figure d’interférence produite par les trous d’Young S1 et S2 est formée de franges rectilignes,
perpendiculaires à S1S2, et régulièrement espacées de l’interfrange :

i = λ× d

a

avec : a = S1S2 en m
avec : D = distance entre le plan contenant les sources et l’écran en m
avec : λ = longueur d’onde de la radiation lumineuse en m
avec : (≈ sa longueur d’onde dans le vide λ0 car nair ≈ 1)

Formule

Remarque
C’est grâce à la diffraction que l’on obtient un champ d’interférence dans lequel on observe
des franges. Une description complète du phénomène observé fait donc appel à la théorie de
la diffraction. Il en ressort que la figure d’interférence observée est modulée par la figure de
diffraction d’un trou (dans le cas des trous d’Young) ou d’une fente (dans le cas des fentes
d’Young). L’interfrange est inchangée. Le résultat des calculs reste donc valable.

1 trou ◦ 2 trous ◦
◦

III Ondes mécaniques stationnaires
III.1 Onde le long d’une corde fixée à ses deux extrémités

https://www.youtube.com/watch?v=aVCqq5AkePI
https://www.youtube.com/watch?v=LTWHxZ6Jvjs
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Ondes/ondes_stationnaires/
stationnaires.php

Vidéo + simulation :

https://www.youtube.com/watch?v=aVCqq5AkePI
https://www.youtube.com/watch?v=LTWHxZ6Jvjs
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Ondes/ondes_stationnaires/stationnaires.php
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Ondes/ondes_stationnaires/stationnaires.php
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On considère une corde fixée à ses deux extrémités (en x = 0 et x = L), le long de laquelle deux
ondes progressives sinusoïdales de même amplitude se propagent en sens inverse :
— une onde n°1 (=onde incidente) se propageant selon (+−→ux),
— une onde n°2 (=onde réfléchie) qui se propage selon (−−→ux), provenant de la réflexion de l’onde

incidente lorsqu’elle arrive en x = L.
Q1. Comment est définie une onde progressive ?

Q2. L’onde résultante vérifie-t-elle ces propriétés ? Pourquoi l’appelle-t-on « onde stationnaire » ?

Nœuds et ventres d’une onde stationnaire : Lorsque deux ondes sinusoïdales de même
fréquence, de même amplitude se propagent en sens inverse, leur superposition donne naissance
à une onde stationnaire sinusoïdale, que l’on peut caractériser par l’existence :
— de nœuds de vibration qui sont des points, notés N , de l’espace qui ne vibrent jamais,

c’est-à-dire tels que, à tout instant, s(xN , t) = 0.
— de ventres de vibration qui sont des points, notés V , de l’espace où la perturbation

(vibration) y est à chaque instant maximale par rapport aux autres points de la corde.
L’existence de nœuds et de ventres de vibration est une propriété caractéristique
des ondes stationnaires.

Définitions

Comment écrire le signal associé à une onde stationnaire ?
Démonstration

Q1. L’onde incidente progressive sinusoïdale se propage selon (+−→ux). Le signal associé s’écrit :

Q2. Le milieu étant limité, il existe une onde réfléchie se propageant selon (−−→ux). Le signal associé s’écrit :

Q3. Le signal de l’onde résultante, s’écrit :

Q4. Utiliser la formule de trigonométrie cos(a) + cos(b) = 2 cos
(
a+ b

2

)
cos

(
a− b

2

)
pour poursuivre le

calcul :

Q5. Que peut-on dire des variables temporelle et spatiale dans l’expression obtenue ? Quelle est la consé-
quence de cela sur la vibration des points de l’espace ?
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Écritue mathématique d’une onde stationnaire :
— Les signaux associés aux ondes stationnaires s’écrivent sous la forme d’un produit d’une

fonction de la position et d’une fonction du temps :

s(x, t) = f(x) × g(t)

— Les signaux associés aux ondes stationnaires sinusoïdales s’écrivent sous la forme

s(x, t) = S0 cos
(
ωt+ φ

)
cos

(
kx+ ψ

)

Formule

Comparaison d’une onde progressive et d’une onde stationnaire au cours du temps :

III.2 Modes propres
La corde étudiée est fixée à ses deux extrémités, en x = 0 et x = L, ce qui impose les conditions

aux limites ∀ t

{
s(x = 0, t) = 0
s(x = L, t) = 0 , traduisant le fait qu’il n’y a aucun déplacement vertical aux deux

extrémités.

Fréquence des modes propres
Démonstration
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Le signal existant sur la corde s’écrit s(x, t) = S0 cos
(
ωt+ φ

)
cos

(
kx+ ψ

)
— Montrer que la condition aux limites en x = 0 impose ψ = ±π

2 [2π].

— Montrer que la condition aux limites en x = L impose une quantification du vecteur d’onde k (c’est-
à-dire que seules certaines valeurs discrètes sont possibles).

— En déduire que la longueur d’onde, la pulsation et la fréquence sont également quantifiées en précisant
les valeurs permises.

— Représenter (en fonction de x) les trois premiers modes propres, localiser les nœuds et les ventres.

— Déterminer les distances séparant deux nœuds (ou deux ventres) consécutifs.
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Longueurs d’onde et fréquences des modes propres : Pour une corde fixée à ses deux
extrémités, les conditions aux limites imposent une quantification des longueurs d’onde et des
fréquences, avec n ∈ N∗ :

λn = 2L
n

⇔ L = n
λn

2 fn = n
c

2L = c

λn

Propriétés

Comment retrouver facilement les fréquences des modes propres ?

❶ Représenter les 3 premiers modes propres de la
corde fixée à ses deux extrémités (ci-contre).

❷ Repérer le lien entre la longueur d’onde et
la longueur de la corde pour ces trois premiers
modes, puis généraliser au mode n, afin d’avoir λn.

❸ Utiliser la relation fn = c

λn

pour en déduire les
fréquences des modes propres.

n = 1

L = λ1/2

n = 2

L = λ2

n = 3

L = λ3 + λ3/2 = 3λ3/2

λ3 = 2L/3

Méthode

III.3 Lien avec les instruments de musique
Les cordes de violon et de guitare sont fixées à leurs deux extrémités. Lorsque le musicien excite la corde,
en la frottant avec un archet pour le violon, en la grattant pour la guitare, un son est émis, mais le
musicien ne sélectionne pas un mode propre donné. La vibration engendrée n’est pas un mode propre
mais une superposition des différents modes propres possibles. Ci-dessous, sont représentés les spectres
d’un la émis par une guitare et un violon. On constate la présence d’un grand nombre d’harmoniques,
tous multiples de la fréquence du fondamental.

Spectre du son émis par la corde de La d’une
guitare

Spectre du son émis par la corde de La d’un
violon
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