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OSC3 : Oscillateurs en régime forcé, résonances

Apres avoir étudié la réponse indicielle et le régime libre des oscillateurs mécaniques et électriques, et mis
en évidence une analogie dans 1’équation régissant leurs évolutions (OSC2), on étudie dans ce chapitre
leur réponse a une excitation entretenue. On choisit cette excitation sous forme d’un signal qui varie
sinusoidalement au cours du temps, ce qui est extrémement important car dans de nombreux domaines,
les signaux sont sous cette forme ou décomposables en une somme de fonctions sinusoidales (courants
électriques produits industriellement par des alternateurs, ondes lumineuses, ondes sonores, etc.)

Il est tres intéressant d’introduire le concept d’impédance complexe, qui permet d’écrire les lois de
I’électricité et de la mécanique en régime sinusoidal forcé sous forme d’équations algébriques simples a
résoudre.
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A savoir par v

v  Les expressions mathématiques réelle et complexe associées a une grandeur en RSF, avec la signifi-
cation des termes.

v L’expression du déphasage entre deux signaux.

v L’impédance complexes d'une résistance, d’'un condensateur, d’'une bobine en RSF.

v Les opérations de dérivation et d’intégration pour un signal complexe.

v La loi des ceuds et la loi des mailles en RSF.

v  Les lois d’association pour les impédances complexes.

v Les ponts diviseurs de tension et d’intensité en RSF.
A savoir faire ¥

v Etablir Pexpression de ’impédance d’une résistance, d’un condensateur, d’une bobine.

v  Passer d’une équation différentielle linéaire a une équation complexe et inversement.

v Utiliser toutes les lois des circuits en notation complexe.

v/ Déterminer une impédance ou une admittance équivalente a une association.

v/ Déterminer 'amplitude et la phase d’une grandeur réelle a partir de son amplitude complexe.

v Etudier la réponse fréquentielle d’un circuit en intensité ou en tension.

v Relier I'acuité d’une résistance au facteur de qualité a partir de graphes expérimentaux d’amplitude
et de phase.

v Mettre en ceuvre un dispositif expérimental visant a caractériser un phénomene de résonance.
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| Mise en évidence du phénomene de résonance

Si on impose a un systeme oscillant une perturbation qui se répéte au cours du temps, quelle va étre sa
réponse ?

<6 Simulation : excitation sinusoidale d’un oscillateur mécanique
https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort_rsf.php
Un objet cylindrique de masse m est suspendu a un ressort de raideur k, et plongé dans un liquide
exercant une force de frottement fluide, proportionnelle & la vitesse, avec un coefficient h, qui
dépend de la viscosité du liquide. Un dispositif formé de poulies permet d’imposer a 'oscillateur
une excitation sinusoidale.

excitation(mm) excitation(mm) excitation(mm) excitation(mm)
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fréquence : 0,4Hz fréquence : 1,3Hz fréquence : 2,9Hz fréquence : 4Hz

Observations :

Comment appelle-t-on le phénomene d’augmentation de I'amplitude de la réponse pour une fréquence
d’excitation précise ?

?" Remarques
e On a modifié seulement la fréquence de I'excitation, pas son amplitude!

e On pourrait aussi s’intéresser a la vitesse de la masse m (réponse en vitesse).

e On représente graphiquement la réponse du systeme a une excitation sinusoidale : ampli-
tude et phase en fonction de la fréquence/pulstation.

e Le phénomene de résonance peut étre néfaste ou bénéfique en fonction des situations/ap-
plications : exemples ci-dessous

Exemples du phénomene résonance : Ecroulement du pont d’Angers en 1850 sous 'effet du pas cadencé,
enfant poussé sur une balangoire, verre cassé par la voix, caisse de résonance d’un violon.


https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort_rsf.php
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@ Simulation : excitation sinusoidale d’un oscillateur électrique

https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/rlcexci.
html

On étudie la réponse en intensité d'un circuit RLC série en examinant la tension aux bornes de la
résistance.

R=44Q L =190 mH € =2050 nF

N A AT AL I A
R T Y YT O

On observe également un phénomene de résonance en intensité avec cette simulation, mais il existe aussi
une résonance en tension, qui sera étudiée en détail dans ce chapitre.

[l Mise en équation

Oscillateur mécanique Oscillateur électrique

r ¥ Forme canonique

Forme canonique de I’équation différentielle d’un oscillateur en RSF :

d%s  wpds W,
= + aoa +wis = Agcos(wt) ou E+ +§0$ +wgs = Apcos(wt)

wp = pulsation propre en rad-s—*
avec : () = facteur de qualité (grandeur sans dimension)
w = pulsation du signal d’excitation en rad-s~* W # wy



https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/rlcexci.html
https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/rlcexci.html
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La solution générale de cette équation différentielle (linéaire a coefficients constants) est de la forme
s(t) = su(t) + sp(t) avec :

e sy(t) une solution de I’équation homogene (= sans second membre)

e sp(t) une solution particuliere de la forme du second membre — sinusoidale

La solution de I’équation homogene s’annule rapidement (— OSC2) donc trés vite on peu assimiler la
solution générale a la solution particuliere : s(t) = sp(t) .

¥ Propriété
Régime sinusoidal forcé (RSF) : Tres vite, la réponse d'un systéme linéaire (= régi par une

équation différentielle a coefficients constants) a une excitation sinusoidale est sinusoidale de
méme pulsation que l'excitation, c’est le régime sinusoidal forcé (RSF).

[l Régime sinusoidal forcé

1.1 Signaux sinusoidaux
. ¥ Rappels \

e Ecriture d’un signal sinusoidal : z(t) = X,, cos(wt 4 ¢q)

X,, = amplitude, de méme unité que la grandeur x

w = pulsation imposée par le générateur, en rad-s—*

avec : T
(liée a la période T et a la fréquence f par : w =27 X f = rd
wo = phase a 'origine, en rad

e Déphasage Ay,/; entre deux signaux sinusoidaux synchrones u,(t) = Uy, cos(wt+p10)
et ug(t) = Usy, cos(wt + pap) -

A1 = pa — 1 = Wt + pag — (Wt + @10) = V20 — P10

e Déphasages particuliers :

u; et uy en phase : Ay, =0 u; et uy en opposition de phase : Ay, = L7

NAAA [RSARNARNAR
VYRV U

Les extrema sont atteints au méme moment.  Quand 1'un est minimal, 'autre est maximal.

uy en quadrature avance sur u; : Apy/; = 5 up en quadrature retard sur u; @ Ay =

’ \\ ’ N ’
, . , " S\ g
’ \ ’ \ ’
’ /! t
v | v |
\ / \\ ’
N / N )/

Les signaux sont dit « en quadrature de phase » lorsqu’un signal est nul au moment ou 'autre
est & son minimum ou a son maximum.

NI
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1.2 Signal complexe associé a un signal sinusoidal

s ¥ Définition \

Au signal z(t) = X, cos(wt + ¢), on associe le signal complexe :

z(t) = Xmej(wt+s0) — Xmejsaejwt — Xmejwt

avec X, = X6/ = amplitude complexe

. ¥ Rappels mathématiques \

Ecritures d’un nombre complexe :

I
IS
+
<.
5

|
<

a

<

>
|

z r(cosf + jsinf)

avec : r = |z| = Va? + b?

I
0 = arg(z) tel que tanf = Z - Rn;é;))

Complexe conjugué : z* = a — jb (et |z| = /zz*¥)

Quotient et multiplication : Pour z; = r1e/ et xy = roef® :

Ty x r
arg ( ) =0, — 06, et 2 =2
T Ty 1
arg(@x&):(%%—& et |zy X x1| =19 X 1y
L J
p vy Méthode \

Si on connait le signal complexe z(t), on peut déterminer :

— la valeur instantanée du signal réel en prenant la partie réelle : z(t) = Re (z(t))
— lamplitude du signal réel en prenant le module : X,,, = |z(t)| = | X, ()]
— la phase a l'origine des temps en prenant 'argument : ¢ = arg (z(t)) — wt = arg(X,,)

Exercice de cours (@)

Q1. Donner les signaux réels associés aux signaux d’amplitudes complexes suivantes :

) U, .
(a) Up = Upe™77/3 (b) I, = — on (c) I = —I,e™/®
Q2. Donner le module des complexes ci-dessous :
E Ejwr —Ew?
Um — b — Jwt U. = 0
(2) Unm 1+ jwr (b) u 1 —i—jm’e (¢) Un —w? + jwwy/Q + wi
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[11.3  Opérations sur les complexes

La notation complexe s’applique sans difficulté a des résultats d’opérations linéaires effectuées sur des
signaux sinusoidaux : si s1(t) et sa(t) sont deux signaux sinusoidaux représentés par les complexes s, (t)
et sy(t), le signal aes1(t) + Bsa(t) sera représenté par le complexe as(t) + Bsa(t), avec o et 3 des réels.
4 Démonstration
On considére un signal s(t) = S,, cos(wt + ¢) de représentation complexe s(t) = S,,e/*".
ds
Exprimer la dérivée temporelle — en fonction de s :

Exprimer la primitive sinusoidale (de constante d’intégration nulle) de s(t) en fonction de s :

# Démonstration
On considére deux signaux complexes s1(t) = Sy, cos(wt + ¢1) et sa(t) = Say, cos(wt + o) de
représentations complexes s1(t) = Si,e’" et s3(t) = So, 7"
Exprimer le déphasage de so(t) par rapport a s;(t) :

- v Méthode N
Dérivation :
- . . - . ds(t) .
— Pour dériver un signal complexe, il faut le multiplier par jw : = jw x s(t)
d?s(t
— Pour dériver deux fois un signal complexe, il faut le multiplier par —w? : dt(? ) = —w?xs(t)
L o : . . . s(t)
Intégration : Pour intégrer un signal complexe, il faut le diviser par jw : / s(t)dt = ==
Jjw
, , . _ sa(t)
Déphasage : Le déphasage de sy(t) par rapport a s;(t) est : g/ = arg 0
S1
. J

IV Etude de circuits électriques linéaires en RSF

IV.1 Impédances complexes

a) Impédance complexe d'un dipdle passif
. ¥ Définitions \
Impédance complexe : dindl
On consideére un dipole linéaire passif, en convention récepteur, dont 1po-e

i
la tension a ses bornes s'écrit u(t) = U, cos(wt + ¢,) et traversé <7|:|
u

par un courant d’intensité i(t) = I,,, cos(wt + ;).

L’impédance complexe Z du dipdle est définie par : Z = % & u=4ZX1
i
U, J(wi+eu) U, X 390 ¢ elfu U, U, .
On a donc : Z = 64 = . eA = =2 = Toilpu—wi)
Inei@tted) — [ox e xeivi I, I
Z = ’Z‘ =Un  en Ohm (Q)
Soit: Z = Zel? avec: ¢ = déphasage de la tension par rapport a l'intensité du courant

arg(Z) = arg (%) =@, —; enrad

1

Admittance complexe Y : Y = Z

avec Y = ‘X‘ = I= en Siemens (S) ou en Q7!
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“?” Remarques
e La relation entre impédance et admittance complexes est ¥ = %, ce qui donne la relation
entre les arguments : arg(Y) = —arg(Z).
e En convention générateur, on a u = —Z X1 I:ldlpole 1
u

b) Impédances de la résistance, de la bobine et du condensateur

fg Démonstration On étudie un conducteur ohmique de résistance R :
Q1. Etablir I'expression de son impédance complexe et de son admittance complexe.
Q2. En déduire les comportements de la résistance a basse et haute fréquence.

Q3. Déterminer le déphasage entre la tension a ses bornes et 'intensité qui le traverse. Qui, de la
tension ou de l'intensité, est en avance sur ’autre ?

Q4. Représenter u et i sur le méme graphique en fonction du temps.

55 Démonstration On étudie une bobine d’inductance L :
Q1. Etablir I'expression de son impédance complexe et de son admittance complexe.
Q2. En déduire les comportements de la résistance a basse et haute fréquence.

Q3. Déterminer le déphasage entre la tension a ses bornes et 'intensité qui le traverse. Qui, de la
tension ou de l'intensité, est en avance sur I'autre ?

Q4. Représenter u et i sur le méme graphique en fonction du temps.
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ﬁ Démonstration On étudie un condensateur de capacité C' :

Q1. Etablir I'expression de son impédance complexe et de son admittance complexe.

Q2. En déduire les comportements de la résistance a basse et haute fréquence.

Q3. Déterminer le déphasage entre la tension a ses bornes et I'intensité qui le traverse. Qui, de la

tension ou de l'intensité, est en avance sur l'autre ?

Q4. Représenter u et i sur le méme graphique en fonction du temps.

‘ ' Bilan
Résistance Bobine Condensateur
R L . c
Schéma . — /T i
Impédance A 1
- =jlw -
complexe Zn=1R = = jCw
1
Impédance Zr =R Zy, = Lw Zo = o
Admittance 1 1 Vo
= — = T C = ij
complexe Yi R L jLw
Z;, —0 Zo — 00
L ; I C o
w—0 Zrp =R | —000> & —>—— D
=0
u u=>0 m uz
J1, — 00 Zo — 0
L . L ¢ o
W —> 00 Zr — R T & NG
1 =0
" “ u u=>0
.
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V.2 Lois de nceuds et loi des mailles en RSF

Les loi des nceuds et loi des mailles (ou lois de Kirchhoff) s’écrivent en RSF comme en régime permanent,
tant que l'on se trouve dans le cadre de ’ARQS. On utilise la notation complexe.

- ¥ Lois de Kirchhoff \

e Dans une maille orientée, la somme algébrique des tensions complexes est nulle :
> st =0 3 eyl =0
k k

avec € = +1 si la fleche de u; est dans le sens d’orientation de la maille, et £, = —1 si la
fleche de uy, est en sens opposé au sens d’orientation de la maille.

e En un nceud, la somme algébrique des intensités complexes est nulle :
Z‘gkiﬁ =0« ngjm,k =0
k k

avec €, = +1 si le courant i, arrive dans le nceud et €, = —1 si le courant 7, part du noeud.
\ J

IV.3 Associations d'impédances

4 Démonstration
On considere deux dipoles d’impédances complexes Z; et Z; en série. On note u; la tension aux
bornes de Z; et uy la tension aux bornes de Z,. La tension aux bornes de I'’ensemble est notée u, et
I'intensité du courant a travers les deux résistances est notée i. On se place en convention récepteur.

Uy Uz

— Etablir la relation donnant u en fonction de 3.

— P — En déduire que 'association des deux impédances com-

? L. P X .
Zy Zo plexes Z; et Zy en série est équivalente a une unique
impédance complexe Zg, dont on donnera l’expression.

U

4 Démonstration
On considere deux impédances complexes Z; et Z; en parallele. On note 7; I'intensité du courant a
travers Z; et iz I'intensité du courant a travers Zy. La tension aux bornes de ’association parallele
est notée u, et I'intensité du courant qui arrive en entrée de ’association parallele est notée 7. Tous
les composants sont en convention récepteur.

— En utilisant une loi des nceuds, établir I’expression de 7 en
Z1 1 fonction de w.
—' '—; . . u 2.q
3 i — Mettre cette expression sous la forme ¢ = —, en précisant
—>— —>— Zsq

1
—] I’expression de Z_en fonction de Z; et Zs.

L2 7o éq
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. ¥ Associations d’impédances complexes \

Association en série :
L’impédance complexe du dipole constitué par I'association série de deux dipdles d’'impédances
complexes Z; et Zy est :

Zeqs = 21+ Zy

eq

Association en parallele :
L’impédance complexe du dipdle constitué par ’association parallele de deux dipoles d'impé-
dances complexes Z; et Z, vérifie :

L1
Zeqp L1 Lo

& Yyp=¥ith

avec Y l'admittance complexe.

S Exercice de cours

Pour chacun des circuits suivants, exprimer 'impédance complexe Z,p équivalente au dipole AB.
On notera w la pulsation des grandeurs électriques.
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IV.4 Ponts diviseurs en RSF

r ” ¥ Pont diviseur de tension N
1
%
— La formule du pont diviseur de tension est encore valable avec
7 les impédances complexes, avec la méme hypothese d’un cou-
rant identique dans les deux dipdles :
u ZQ Uz
Z2 7
= U —
L+ 2
\. J/
- ¥ Pont diviseur de courant \
i
L1 La formule du pont diviseur de courant est encore valable avec
) Z les impédances complexes, avec la méme hypothese d'une ten-
—>—9 *——— . . . e A
_ sion identique aux bornes des deux dipoéles :
iy
e B e 7y
1 = 1=
Zy - i+ 4y

8 Exercice de cours (©

Etablir les expressions, en utilisant la notation complexe, de u en fonction de e et i; en fonction de
ip pour les circuits ci-dessous.

QL. 4{ Q2.

GTG L |u €T£ W
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V' Circuit RLC en régime sinusoidal forcé

V.1 Définition

¥ Définition
Résonance : lorsque I'amplitude de la réponse sinusoidale d'un systeme a une excitation sinu-

soidale, d’amplitude fixe mais de fréquence variable, passe par un maximum pour une valeur f,
de la fréquence, on parle de résonance. f, est appelée fréquence de résonance.

N

“? Remarque

e [l existe deux phénomenes de résonance observables avec un circuit RLC série : la réso-
nance en charge (= résonance en tension aux bornes du condensateur) et la résonance en
intensité.

V.2 Résonance en intensité
a) Mise en équation et résolution
Démonstration

On étudie 'intensité, une fois le régime transitoire terminé, dans le circuit RLC série alimenté par
un générateur idéal de fem e(t) = E,, cos(wt).

Circuit et comportement qualitatif

Q1. Représenter le circuit permettant de visualiser a I'oscilloscope la tension délivrée par le générateur
et l'intensité du courant électrique, et positionner les différents courants et tensions afin que le
générateur soit en convention générateur et les autres dipdles en convention récepteur.
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Q2.

Q3.

Déterminer, a ’aide des comportements asymptotiques des dipdles, la valeur de I,,, & basse et haute
fréquences.

Amplitude complexe de l’intensité

Le circuit étant alimenté par un GBF délivrant une tension sinusoidale et comme tous les composants
sont linéaires, tous les signaux (tensions et intensités) sont sinusoidaux a la pulsation w du GBF.

Déterminer, en notation complexe, l'intensité i(t), puis son amplitude complexe I,;,.

La mettre sous la forme : I,,,(w) = et identifier les trois constantes A, wy et Q.

Lo (2-9)

Wo w
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Q4. Déterminer [, quand w < wp et quand w > wy. On ne gardera que LE terme dominant au déno-
minateur.

Etude de ’amplitude I,

Q5. Etablir Pexpression de I,,(w).

Q6. Etudier les limites a basse et haute fréquences.

Q7. Etudier 'existence d’une résonance.
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Q8. Tracer l'allure de I,,(w).

w

Q9. Déterminer les expressions des pulsations de coupure en fonction de wy et Q.

Q10. En déduire que la largeur de la bande passante Aw = we.o — w,p est reliée a @ par : Aw = g). Que

dire de la dépendance de I'acuité de la résonance avec le facteur de qualité ?
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Etude du déphasage ¢, entre i et e

Q11. Exprimer ; en fonction de w, wy et Q.

Q12. Déterminer les limites de ; quand w — 0 et w — oo.

Q13. Que vaut le déphasage a la résonance ? Comment sont e(t) et i(t) a la résonance ?

Q14. Tracer l'allure de ¢;(w).

pi(w),

T2 - mmm e

— )2 -
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- ¥ Résonance en intensité dans un circuit RLC
Excitation e(t) = Ep, cos(wt)

Equation différentielle

2 di 1. de
[ty gt L, de
e gt T w

Réponse de l'oscillateur en RSF,
une fois le régime transitoire ter-
miné

i(t) = I, cos(wt + ¢)

Amplitude complexe

B E,/R
TR(EE)

Pulsation propre [rad/s]

Wy =

1
VLC

Pulsation de résonance [rad/s]

w, =wy indépendante du facteur de qualité Q)

Facteur de qualité [sans unité]

1 |L

“=%rVc
relié a la bande passante par () = Z—O
w

(et Aw = domaine pour lequel 1, > Im\v/“;")

Graphe de 'amplitude

Amplitude de la réponse

Graphe de la phase

¥

)3

wo
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b) Utilisation des graphes
p vy Méthode \

Méthode : Déterminer graphiquement wy et () quand sont fournies les courbes d’amplitude
I,,, et de phase ¢ en présence d’une résonance du type de la résonance en intensité d'un RLC
série :

@ Lire wy :

e sur la courbe de phase : p(wg) = 0;

e ou sur la courbe d’amplitude : wy est la pulsation pour laquelle 'amplitude est maximale
@ Déterminer la largeur de la bande passante Aw :
e Lire la valeur maximale de 'amplitude I, max = Ipn(wo) ;

b
V2
m,max

e Lire les abscisses w,.; et wq pour lesquelles 'amplitude vaut ol

e (Calculer

e En déduire Aw = we — w,q.

@ FEn déduire le facteur de qualité Q) = Z—O.
w

\ J/

V.3 Résonance en tension aux bornes de ('

a) Mise en équation et résolution

' Démonstration
On cherche a déterminer les caractéristiques de la tension aux bornes du condensateur uc(t) =
Ucnm cos(wt + ,,) dans le circuit RLC' série alimenté par un générateur de fem e(t) = E,, cos(wt),
une fois le régime transitoire terminé.

Circuit et comportement qualitatif

Q1. Représenter le circuit permettant de visualiser a ’oscilloscope la tension délivrée par le générateur
et la tension aux bornes du condensateur, et positionner les différents courants et tensions afin que
le générateur soit en convention générateur et les autres dipoles en convention récepteur.

Q2. Déterminer, a 'aide des comportements asymptotiques des dipoles, la valeur de Ug,, a basse et
haute fréquences.
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Amplitude complexe de la tension aux bornes du condensateur

Q3. Etablir I'expression de uc(t), puis de Ug,, en fonction de E,,, w, L, C, R.

En, - :
Mettre Ugy, sous la forme : Ugy,(w) = 5 T et vérifier que les expressions de wy et ()
— — w w
- +j=—
Wi Q wo

sont celles définies au chapitre OSC2.

Q4. Exprimer Ug,, quand w < wy et Ug,, quand w > wy. Au dénominateur de Ug,,, on ne gardera que
LE terme dominant. En déduire les limites de Ug,,,. Commenter physiquement les deux cas limites.

Q5. Exprimer 'amplitude Ug,, de la tension aux bornes du condensateur.
p P

2 X
Q6. Apres avoir posé X = (w) et introduit la fonction f(X) telle que f(X) = (1—X)2+@, compléter
wo

les tableaux de variation de Ug,,(w) sur la page suivante.



0SC3 Page 20 / 23] MPSI1 - 2025,/2026

Tableaux de variation :

PourQ<\}§: PourQ>\}§:
w 0 + 00 w 0 + o0
J'(X) J'(X)
Utm(w) Utm(w)
UCm<W) Ucm(u))

Q7. Tracer 'allure de Ugy,(w) pour @ = 0,5 et @ = 2 (avec des couleurs différentes), en faisant appa-
raitre clairement les points particuliers d’abscisses w = 0, w = wy et w = w,..

UCm A

w

Q8. Quelle est I'influence du facteur de qualité sur la résonance en tension aux bornes du condensateur ?

Etude du déphasage

Q9. A partir des limites de Ugyy,, déterminer les limites de ¢, le déphasage de la réponse Ucm(t) par
rapport a l'excitation e(t).
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Q10. Déterminer la valeur du déphasage en wy.

Q11. Montrer que ¢, (w) < 0 puis tracer l'allure de ¢, (w) pour @ = 0,5 et Q = 2 (2 couleurs différentes).

EV

— T2
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— ¥ Résonance en tension aux bornes du condensateur —————

Excitation e(t) = E,, cos(wt)
, d?u, du. 1 1

: e I R L= Lo
Equation différentielle a2 + qt + o Ce( )

Réponse de l'oscillateur en RSF,

une fois le régime transitoire ter- uc(t) = Ucn cos(wt + )
miné
E
Ucpm(w) = o
Amplitude complexe Cm() 2 lw
l——5+Jj-—
Wo () wo

1
Pulsation propre [rad/s] wo = =
Facteur de qualité | ] o L [T
acteur de qualité [sans unité =4/ =
! RV C

L
2Q°

1
. ) résonance seulement si () > — et w, = wpy/1 —
Pulsation de résonance [rad/s] V2

dépend du facteur de qualité @)

Amplitude de la réponse

Graphe de 'amplitude

Graphe de la phase
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b) Utilisation des graphes

e i} Méthode N

Méthode : Déterminer graphiquement w, et () quand sont fournies les courbes d’ampli-
tude Ug,, et de phase ¢ en présence d'une résonance du type de la résonance en tension
aux bornes du condensateur d'un RLC série :

@ Lire wy sur la courbe de phase : p(wpy) = _ ;
@ 2 méthodes pour déterminer () :

e Lire la pulsation w, de résonance sur la courbe d’amplitude Ug,, : w, est la pulsation a
laquelle Ug,, est maximale, puis en déduire le facteur de qualité () grace a la relation :
Wy = woy/1 — ﬁ

e ou sur la courbe d’amplitude Ugyy,, lire 'amplitude Ug,, (wo) en wy et Pamplitude Ugy, (0)
en w = 0. Utiliser ensuite la relation Ugy,(wo) = @ X Ucp,(0) pour en déduire Q.
@ Déterminer la largeur de la bande passante Aw :
e Lire la valeur maximale de 'amplitude Ucyymax = Uom(w;) ;

Cmmax |
V2

e Lire les abscisses w.; et we pour lesquelles 'amplitude vaut

e Calculer

UCm max

N

e En déduire Aw = we — we.
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