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OSC3 : Oscillateurs en régime forcé, résonances

Après avoir étudié la réponse indicielle et le régime libre des oscillateurs mécaniques et électriques, et mis
en évidence une analogie dans l’équation régissant leurs évolutions (OSC2), on étudie dans ce chapitre
leur réponse à une excitation entretenue. On choisit cette excitation sous forme d’un signal qui varie
sinusoïdalement au cours du temps, ce qui est extrêmement important car dans de nombreux domaines,
les signaux sont sous cette forme ou décomposables en une somme de fonctions sinusoïdales (courants
électriques produits industriellement par des alternateurs, ondes lumineuses, ondes sonores, etc.)
Il est très intéressant d’introduire le concept d’impédance complexe, qui permet d’écrire les lois de
l’électricité et de la mécanique en régime sinusoïdal forcé sous forme d’équations algébriques simples à
résoudre.
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À savoir par
✓ Les expressions mathématiques réelle et complexe associées à une grandeur en RSF, avec la signifi-

cation des termes.
✓ L’expression du déphasage entre deux signaux.
✓ L’impédance complexes d’une résistance, d’un condensateur, d’une bobine en RSF.
✓ Les opérations de dérivation et d’intégration pour un signal complexe.
✓ La loi des œuds et la loi des mailles en RSF.
✓ Les lois d’association pour les impédances complexes.
✓ Les ponts diviseurs de tension et d’intensité en RSF.

À savoir faire
✓ Établir l’expression de ’impédance d’une résistance, d’un condensateur, d’une bobine.
✓ Passer d’une équation différentielle linéaire à une équation complexe et inversement.
✓ Utiliser toutes les lois des circuits en notation complexe.
✓ Déterminer une impédance ou une admittance équivalente à une association.
✓ Déterminer l’amplitude et la phase d’une grandeur réelle à partir de son amplitude complexe.
✓ Étudier la réponse fréquentielle d’un circuit en intensité ou en tension.
✓ Relier l’acuité d’une résistance au facteur de qualité à partir de graphes expérimentaux d’amplitude

et de phase.
✓ Mettre en œuvre un dispositif expérimental visant à caractériser un phénomène de résonance.
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I Mise en évidence du phénomène de résonance
Si on impose à un système oscillant une perturbation qui se répète au cours du temps, quelle va être sa
réponse ?

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort_rsf.php
Un objet cylindrique de masse m est suspendu à un ressort de raideur k, et plongé dans un liquide
exerçant une force de frottement fluide, proportionnelle à la vitesse, avec un coefficient h, qui
dépend de la viscosité du liquide. Un dispositif formé de poulies permet d’imposer à l’oscillateur
une excitation sinusoïdale.

Simulation : excitation sinusoïdale d’un oscillateur mécanique

Observations :

Comment appelle-t-on le phénomène d’augmentation de l’amplitude de la réponse pour une fréquence
d’excitation précise ?

Remarques
• On a modifié seulement la fréquence de l’excitation, pas son amplitude !
• On pourrait aussi s’intéresser à la vitesse de la masse m (réponse en vitesse).
• On représente graphiquement la réponse du système à une excitation sinusoïdale : ampli-

tude et phase en fonction de la fréquence/pulstation.
• Le phénomène de résonance peut être néfaste ou bénéfique en fonction des situations/ap-

plications : exemples ci-dessous

Exemples du phénomène résonance : Écroulement du pont d’Angers en 1850 sous l’effet du pas cadencé,
enfant poussé sur une balançoire, verre cassé par la voix, caisse de résonance d’un violon.

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort_rsf.php
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https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/rlcexci.
html
On étudie la réponse en intensité d’un circuit RLC série en examinant la tension aux bornes de la
résistance.

Simulation : excitation sinusoïdale d’un oscillateur électrique

On observe également un phénomène de résonance en intensité avec cette simulation, mais il existe aussi
une résonance en tension, qui sera étudiée en détail dans ce chapitre.

II Mise en équation
Oscillateur mécanique Oscillateur électrique

Forme canonique de l’équation différentielle d’un oscillateur en RSF :

d2s

dt2 + ω0

Q

ds

dt
+ ω2

0s = A0 cos(ω t) ou s̈ + +ω0

Q
ṡ + ω2

0s = A0 cos(ω t)

ω0 = pulsation propre en rad·s−1

avec : Q = facteur de qualité (grandeur sans dimension)

ω = pulsation du signal d’excitation en rad·s−1 ω ̸= ω0

Forme canonique

https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/rlcexci.html
https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/rlcexci.html
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La solution générale de cette équation différentielle (linéaire à coefficients constants) est de la forme
s(t) = sH(t) + sP (t) avec :
• sH(t) une solution de l’équation homogène (= sans second membre)
• sP (t) une solution particulière de la forme du second membre → sinusoïdale
La solution de l’équation homogène s’annule rapidement (→ OSC2) donc très vite on peu assimiler la
solution générale à la solution particulière : s(t) = sP (t) .

Régime sinusoïdal forcé (RSF) : Très vite, la réponse d’un système linéaire (= régi par une
équation différentielle à coefficients constants) à une excitation sinusoïdale est sinusoïdale de
même pulsation que l’excitation, c’est le régime sinusoïdal forcé (RSF).

Propriété

III Régime sinusoïdal forcé
III.1 Signaux sinusoïdaux

• Écriture d’un signal sinusoïdal : x(t) = Xm cos(ωt + φ0)

avec :

Xm = amplitude, de même unité que la grandeur x
ω = pulsation imposée par le générateur, en rad·s−1

(liée à la période T et à la fréquence f par : ω = 2π × f = 2π

T
φ0 = phase à l’origine, en rad

• Déphasage ∆φ2/1 entre deux signaux sinusoïdaux synchrones u1(t) = U1m cos(ωt+φ10)
et u2(t) = U2m cos(ωt + φ20) :

∆φ2/1 = φ2 − φ1 = ωt + φ20 − (ωt + φ10) = φ20 − φ10

• Déphasages particuliers :

u1 et u2 en phase : ∆φ2/1 = 0

t

u1

u2

Les extrema sont atteints au même moment.

u1 et u2 en opposition de phase : ∆φ2/1 = ±π

t

u1

u2

Quand l’un est minimal, l’autre est maximal.

u2 en quadrature avance sur u1 : ∆φ2/1 = π
2

t

u1

u2

u2 en quadrature retard sur u1 : ∆φ2/1 =
−π

2

t

u1

u2

Les signaux sont dit « en quadrature de phase » lorsqu’un signal est nul au moment où l’autre
est à son minimum ou à son maximum.

Rappels
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III.2 Signal complexe associé à un signal sinusoïdal

Au signal x(t) = Xm cos(ωt + φ), on associe le signal complexe :

x(t) = Xmej(ωt+φ) = Xmejφejωt = Xmejωt

avec Xm = Xmejφ = amplitude complexe

Définition

Écritures d’un nombre complexe :

x = a + jb = rejθ = r(cos θ + j sin θ)

avec : r = |x| =
√

a2 + b2

avec : θ = arg(x) tel que tan θ = b

a
= Im(x)

Re(x)
Complexe conjugué : x⋆ = a − jb (et |x| =

√
xx⋆)

Quotient et multiplication : Pour x1 = r1e
jθ1 et x2 = r2e

jθ2 :

arg
(

x2

x1

)
= θ2 − θ1 et

∣∣∣∣∣x2

x1

∣∣∣∣∣ = r2

r1

arg
(
x2 × x1

)
= θ2 + θ1 et |x2 × x1| = r2 × r1

Rappels mathématiques

Si on connaît le signal complexe x(t), on peut déterminer :
— la valeur instantanée du signal réel en prenant la partie réelle : x(t) = Re (x(t))
— l’amplitude du signal réel en prenant le module : Xm = |x(t)| = |Xm(t)|
— la phase à l’origine des temps en prenant l’argument : φ = arg (x(t)) − ωt = arg(Xm)

Méthode

Q1. Donner les signaux réels associés aux signaux d’amplitudes complexes suivantes :
(a) UL = Ume−jπ/3 (b) I1 = −j

U0

R
(c) I2 = −Imejπ/6

Q2. Donner le module des complexes ci-dessous :
(a) Um = E

1 + jωτ
(b) u = Ejωτ

1 + jωτ
ejωt (c) Um = −Eω2

0
−ω2 + jωω0/Q + ω2

0

Exercice de cours A⃝
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III.3 Opérations sur les complexes
La notation complexe s’applique sans difficulté à des résultats d’opérations linéaires effectuées sur des
signaux sinusoïdaux : si s1(t) et s2(t) sont deux signaux sinusoïdaux représentés par les complexes s1(t)
et s2(t), le signal αs1(t) + βs2(t) sera représenté par le complexe αs1(t) + βs2(t), avec α et β des réels.

On considère un signal s(t) = Sm cos(ωt + φ) de représentation complexe s(t) = Smejωt.

Exprimer la dérivée temporelle ds

dt
en fonction de s :

Exprimer la primitive sinusoïdale (de constante d’intégration nulle) de s(t) en fonction de s :

Démonstration

On considère deux signaux complexes s1(t) = S1m cos(ωt + φ1) et s2(t) = S2m cos(ωt + φ2) de
représentations complexes s1(t) = S1mejωt et s2(t) = S2mejωt.
Exprimer le déphasage de s2(t) par rapport à s1(t) :

Démonstration

Dérivation :

— Pour dériver un signal complexe, il faut le multiplier par jω : ds(t)
dt

= jω × s(t)

— Pour dériver deux fois un signal complexe, il faut le multiplier par −ω2 : d2s(t)
dt2 = −ω2×s(t)

Intégration : Pour intégrer un signal complexe, il faut le diviser par jω :
∫

s(t)dt = s(t)
jω

Déphasage : Le déphasage de s2(t) par rapport à s1(t) est : φ2/1 = arg
(

s2(t)
s1(t)

)

Méthode

IV Étude de circuits électriques linéaires en RSF
IV.1 Impédances complexes
a) Impédance complexe d’un dipôle passif

Impédance complexe :
On considère un dipôle linéaire passif, en convention récepteur, dont
la tension à ses bornes s’écrit u(t) = Um cos(ωt + φu) et traversé
par un courant d’intensité i(t) = Im cos(ωt + φi).

dipôle
i

u

L’impédance complexe Z du dipôle est définie par : Z = u

i
⇔ u = Z × i

On a donc : Z = Umej(ωt+φu)

Imej(ωt+φi)
= Um ×���ejωt × ejφu

Im ×���ejωt × ejφi
= Um

Im

= Um

Im

ej(φu−φi)

Soit : Z = Zejφ avec :
Z =

∣∣∣Z∣∣∣ = Um

Im
en Ohm (Ω)

φ = déphasage de la tension par rapport à l’intensité du courant
= arg(Z) = arg

(
u
i

)
= φu − φi en rad

Admittance complexe Y : Y = 1
Z

avec Y =
∣∣∣Y ∣∣∣ = Im

Um
en Siemens (S) ou en Ω−1

Définitions
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Remarques

• La relation entre impédance et admittance complexes est Y = 1
Z

, ce qui donne la relation
entre les arguments : arg(Y ) = −arg(Z).

• En convention générateur, on a u = −Z×i
dipôle

i

u

b) Impédances de la résistance, de la bobine et du condensateur

oooooooooooooooooo On étudie un conducteur ohmique de résistance R :
Q1. Établir l’expression de son impédance complexe et de son admittance complexe.
Q2. En déduire les comportements de la résistance à basse et haute fréquence.
Q3. Déterminer le déphasage entre la tension à ses bornes et l’intensité qui le traverse. Qui, de la

tension ou de l’intensité, est en avance sur l’autre ?
Q4. Représenter u et i sur le même graphique en fonction du temps.

Démonstration

ooooooooooooooooooOn étudie une bobine d’inductance L :
Q1. Établir l’expression de son impédance complexe et de son admittance complexe.
Q2. En déduire les comportements de la résistance à basse et haute fréquence.
Q3. Déterminer le déphasage entre la tension à ses bornes et l’intensité qui le traverse. Qui, de la

tension ou de l’intensité, est en avance sur l’autre ?
Q4. Représenter u et i sur le même graphique en fonction du temps.

Démonstration
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oooooooooooooooooo On étudie un condensateur de capacité C :
Q1. Établir l’expression de son impédance complexe et de son admittance complexe.
Q2. En déduire les comportements de la résistance à basse et haute fréquence.
Q3. Déterminer le déphasage entre la tension à ses bornes et l’intensité qui le traverse. Qui, de la

tension ou de l’intensité, est en avance sur l’autre ?
Q4. Représenter u et i sur le même graphique en fonction du temps.

Démonstration

Résistance Bobine Condensateur

Schéma
R

i

u

L
i

u

C
i

u

Impédance
complexe ZR = R ZL = jLω ZC = 1

jCω

Impédance ZR = R ZL = Lω ZC = 1
Cω

Admittance
complexe YR = 1

R
YL = 1

jLω
YC = jCω

ω −→ 0 ZR → R

ZL → 0
L

i

u

⇔
L

i
u = 0

ZC → ∞
C

i

u

⇔
C

i = 0
u

ω −→ ∞ ZR → R

ZL → ∞
L

i

u

⇔
L

i = 0
u

ZC → 0
C

i

u

⇔
C

i
u = 0

Bilan
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IV.2 Lois de nœuds et loi des mailles en RSF
Les loi des nœuds et loi des mailles (ou lois de Kirchhoff) s’écrivent en RSF comme en régime permanent,
tant que l’on se trouve dans le cadre de l’ARQS. On utilise la notation complexe.

• Dans une maille orientée, la somme algébrique des tensions complexes est nulle :∑
k

εkuk = 0 ⇔
∑

k

εkUm,k = 0

avec εk = +1 si la flèche de uk est dans le sens d’orientation de la maille, et εk = −1 si la
flèche de uk est en sens opposé au sens d’orientation de la maille.

• En un nœud, la somme algébrique des intensités complexes est nulle :∑
k

εkik = 0 ⇔
∑

k

εkIm,k = 0

avec εk = +1 si le courant ik arrive dans le nœud et εk = −1 si le courant ik part du nœud.

Lois de Kirchhoff

IV.3 Associations d’impédances

On considère deux dipôles d’impédances complexes Z1 et Z2 en série. On note u1 la tension aux
bornes de Z1 et u2 la tension aux bornes de Z2. La tension aux bornes de l’ensemble est notée u, et
l’intensité du courant à travers les deux résistances est notée i. On se place en convention récepteur.

Z1
i

Z2

u1 u2

u

— Établir la relation donnant u en fonction de i.
— En déduire que l’association des deux impédances com-

plexes Z1 et Z2 en série est équivalente à une unique
impédance complexe Zéq dont on donnera l’expression.

Démonstration

On considère deux impédances complexes Z1 et Z2 en parallèle. On note i1 l’intensité du courant à
travers Z1 et i2 l’intensité du courant à travers Z2. La tension aux bornes de l’association parallèle
est notée u, et l’intensité du courant qui arrive en entrée de l’association parallèle est notée i. Tous
les composants sont en convention récepteur.

Z1 i1

Z2
i2

i i

u
— En utilisant une loi des nœuds, établir l’expression de i en

fonction de u.
— Mettre cette expression sous la forme i = u

Zéq
, en précisant

l’expression de 1
Zéq

en fonction de Z1 et Z2.

Démonstration
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Association en série :
L’impédance complexe du dipôle constitué par l’association série de deux dipôles d’impédances
complexes Z1 et Z2 est :

Zéq,S = Z1 + Z2

Association en parallèle :
L’impédance complexe du dipôle constitué par l’association parallèle de deux dipôles d’impé-
dances complexes Z1 et Z2 vérifie :

1
Zéq,P

= 1
Z1

+ 1
Z2

⇔ Yéq,P = Y1 + Y2

avec Y l’admittance complexe.

Associations d’impédances complexes

Pour chacun des circuits suivants, exprimer l’impédance complexe ZAB équivalente au dipôle AB.
On notera ω la pulsation des grandeurs électriques.

Q1. •A
R L

C

•B

Q2. •A

R

•B
L C

Q3.
•A

C L

•B
R

Exercice de cours B⃝
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IV.4 Ponts diviseurs en RSF

Z2

Z1

u u2

u1

La formule du pont diviseur de tension est encore valable avec
les impédances complexes, avec la même hypothèse d’un cou-
rant identique dans les deux dipôles :

u1 = u
Z1

Z1 + Z2

Pont diviseur de tension

•
Z1

i1

•

Z2

i2

i
La formule du pont diviseur de courant est encore valable avec
les impédances complexes, avec la même hypothèse d’une ten-
sion identique aux bornes des deux dipôles :

i1 = i
Z2

Z1 + Z2

Pont diviseur de courant

Établir les expressions, en utilisant la notation complexe, de u en fonction de e et i1 en fonction de
i0 pour les circuits ci-dessous.

Q1.

e

2C R

L u

Q2.

e

R
C

R C u

Q3.
3C

i

i0

L
i1

Exercice de cours C⃝



OSC3 Page 12 / 23 MPSI1 - 2025/2026

V Circuit RLC en régime sinusoïdal forcé
V.1 Définition

Résonance : lorsque l’amplitude de la réponse sinusoïdale d’un système à une excitation sinu-
soïdale, d’amplitude fixe mais de fréquence variable, passe par un maximum pour une valeur fr

de la fréquence, on parle de résonance. fr est appelée fréquence de résonance.

Définition

Remarque
• Il existe deux phénomènes de résonance observables avec un circuit RLC série : la réso-

nance en charge (= résonance en tension aux bornes du condensateur) et la résonance en
intensité.

V.2 Résonance en intensité
a) Mise en équation et résolution

On étudie l’intensité, une fois le régime transitoire terminé, dans le circuit RLC série alimenté par
un générateur idéal de fem e(t) = Em cos(ωt).

Démonstration

Circuit et comportement qualitatif

Q1. Représenter le circuit permettant de visualiser à l’oscilloscope la tension délivrée par le générateur
et l’intensité du courant électrique, et positionner les différents courants et tensions afin que le
générateur soit en convention générateur et les autres dipôles en convention récepteur.
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Q2. Déterminer, à l’aide des comportements asymptotiques des dipôles, la valeur de Im à basse et haute
fréquences.

Amplitude complexe de l’intensité

Le circuit étant alimenté par un GBF délivrant une tension sinusoïdale et comme tous les composants
sont linéaires, tous les signaux (tensions et intensités) sont sinusoïdaux à la pulsation ω du GBF.

Q3. Déterminer, en notation complexe, l’intensité i(t), puis son amplitude complexe Im.

La mettre sous la forme : Im(ω) = A

1 + jQ
(

ω

ω0
− ω0

ω

) et identifier les trois constantes A, ω0 et Q.
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Q4. Déterminer Im quand ω ≪ ω0 et quand ω ≫ ω0. On ne gardera que LE terme dominant au déno-
minateur.

Étude de l’amplitude Im

Q5. Établir l’expression de Im(ω).

Q6. Étudier les limites à basse et haute fréquences.

Q7. Étudier l’existence d’une résonance.
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Q8. Tracer l’allure de Im(ω).

ω

Im

Q9. Déterminer les expressions des pulsations de coupure en fonction de ω0 et Q.

Q10. En déduire que la largeur de la bande passante ∆ω = ωc2 − ωc1 est reliée à Q par : ∆ω = ω0

Q
. Que

dire de la dépendance de l’acuité de la résonance avec le facteur de qualité ?
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Étude du déphasage φi entre i et e

Q11. Exprimer φi en fonction de ω, ω0 et Q.

Q12. Déterminer les limites de φi quand ω → 0 et ω → ∞.

Q13. Que vaut le déphasage à la résonance ? Comment sont e(t) et i(t) à la résonance ?

Q14. Tracer l’allure de φi(ω).

ω

φi(ω)

−π/2

π/2
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Excitation e(t) = Em cos(ωt)

Équation différentielle L
d2i

dt2 + R
di

dt
+ 1

C
i = de

dt

Réponse de l’oscillateur en RSF,
une fois le régime transitoire ter-
miné

i(t) = Im cos(ωt + φ)

Amplitude complexe Im(ω) = Em/R

1 + jQ
(

ω

ω0
− ω0

ω

)

Pulsation propre [rad/s] ω0 = 1√
LC

Pulsation de résonance [rad/s] ωr = ω0 indépendante du facteur de qualité Q
L

T

Facteur de qualité [sans unité] Q = 1
R

√
L

C

relié à la bande passante par Q = ω0

∆ω
(et ∆ω = domaine pour lequel Im > Im,max√

2 )

Graphe de l’amplitude

Amplitude de la réponse

ω

Im

Q = 3

Q = 6

ω0 = ωr

Em/R

Graphe de la phase
Déphasage de la réponse par rapport à l’excitation

ω

φ

ω0

−π
2

π
2

Résonance en intensité dans un circuit RLC
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b) Utilisation des graphes

Méthode : Déterminer graphiquement ω0 et Q quand sont fournies les courbes d’amplitude
Im et de phase φ en présence d’une résonance du type de la résonance en intensité d’un RLC
série :
① Lire ω0 :

• sur la courbe de phase : φ(ω0) = 0 ;
• ou sur la courbe d’amplitude : ω0 est la pulsation pour laquelle l’amplitude est maximale

② Déterminer la largeur de la bande passante ∆ω :
• Lire la valeur maximale de l’amplitude Im,max = Im(ω0) ;

• Calculer Im,max√
2

;

• Lire les abscisses ωc1 et ωc2 pour lesquelles l’amplitude vaut Im,max√
2

;

• En déduire ∆ω = ωc2 − ωc1.
③ En déduire le facteur de qualité Q = ω0

∆ω
.

Méthode

V.3 Résonance en tension aux bornes de C

a) Mise en équation et résolution

On cherche à déterminer les caractéristiques de la tension aux bornes du condensateur uC(t) =
UCm cos(ωt + φu) dans le circuit RLC série alimenté par un générateur de fem e(t) = Em cos(ωt),
une fois le régime transitoire terminé.

Démonstration

Circuit et comportement qualitatif

Q1. Représenter le circuit permettant de visualiser à l’oscilloscope la tension délivrée par le générateur
et la tension aux bornes du condensateur, et positionner les différents courants et tensions afin que
le générateur soit en convention générateur et les autres dipôles en convention récepteur.

Q2. Déterminer, à l’aide des comportements asymptotiques des dipôles, la valeur de UCm à basse et
haute fréquences.
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Amplitude complexe de la tension aux bornes du condensateur

Q3. Établir l’expression de uC(t), puis de UCm en fonction de Em, ω, L, C, R.

Mettre UCm sous la forme : UCm(ω) = Em

1 − ω2

ω2
0

+ j
1
Q

ω

ω0

, et vérifier que les expressions de ω0 et Q

sont celles définies au chapitre OSC2.

Q4. Exprimer UCm quand ω ≪ ω0 et UCm quand ω ≫ ω0. Au dénominateur de UCm, on ne gardera que
LE terme dominant. En déduire les limites de UCm. Commenter physiquement les deux cas limites.

Q5. Exprimer l’amplitude UCm de la tension aux bornes du condensateur.

Q6. Après avoir posé X =
(

ω

ω0

)2
et introduit la fonction f(X) telle que f(X) = (1−X)2+ X

Q2 , compléter
les tableaux de variation de UCm(ω) sur la page suivante.
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Tableaux de variation :

Pour Q <
1√
2

:

ω 0 + ∞
f ′(X)

U ′
Cm(ω)

UCm(ω)

Pour Q >
1√
2

:

ω 0 + ∞
f ′(X)

U ′
Cm(ω)

UCm(ω)

Q7. Tracer l’allure de UCm(ω) pour Q = 0, 5 et Q = 2 (avec des couleurs différentes), en faisant appa-
raître clairement les points particuliers d’abscisses ω = 0, ω = ω0 et ω = ωr.

ω

UCm

Q8. Quelle est l’influence du facteur de qualité sur la résonance en tension aux bornes du condensateur ?

Étude du déphasage

Q9. À partir des limites de UCm, déterminer les limites de φu, le déphasage de la réponse UCm(t) par
rapport à l’excitation e(t).
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Q10. Déterminer la valeur du déphasage en ω0.

Q11. Montrer que φu(ω) < 0 puis tracer l’allure de φu(ω) pour Q = 0, 5 et Q = 2 (2 couleurs différentes).

ω

φu(ω)

−π/2

−π
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Excitation e(t) = Em cos(ωt)

Équation différentielle L
d2uc

dt2 + R
duc

dt
+ 1

C
uc = 1

C
e(t)

Réponse de l’oscillateur en RSF,
une fois le régime transitoire ter-
miné

uc(t) = UCm cos(ωt + φ)

Amplitude complexe
UCm(ω) = Em

1 − ω2

ω2
0

+ j
1
Q

ω

ω0

Pulsation propre [rad/s] ω0 = 1√
LC

Facteur de qualité [sans unité] Q = 1
R

√
L

C

Pulsation de résonance [rad/s]
résonance seulement si Q >

1√
2

et ωr = ω0

√
1 − 1

2Q2

3

dépend du facteur de qualité Q
L

T

Graphe de l’amplitude

Amplitude de la réponse

ω

UCm

Q >
1√
2

Q <
1√
2

ωrω0

QEm

Em

Graphe de la phase
Déphasage de la réponse par rapport à l’excitation

ω

φ

ω0

−π
2

−π

Résonance en tension aux bornes du condensateur
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b) Utilisation des graphes

Méthode : Déterminer graphiquement ω0 et Q quand sont fournies les courbes d’ampli-
tude UCm et de phase φ en présence d’une résonance du type de la résonance en tension
aux bornes du condensateur d’un RLC série :

① Lire ω0 sur la courbe de phase : φ(ω0) = −π

2 ;
② 2 méthodes pour déterminer Q :

• Lire la pulsation ωr de résonance sur la courbe d’amplitude UCm : ωr est la pulsation à
laquelle UCm est maximale, puis en déduire le facteur de qualité Q grâce à la relation :
ωr = ω0

√
1 − 1

2Q2

• ou sur la courbe d’amplitude UCm, lire l’amplitude UCm(ω0) en ω0 et l’amplitude UCm(0)
en ω = 0. Utiliser ensuite la relation UCm(ω0) = Q × UCm(0) pour en déduire Q.

② Déterminer la largeur de la bande passante ∆ω :
• Lire la valeur maximale de l’amplitude UCm max = UCm(ωr) ;

• Calculer UCm max√
2

;

• Lire les abscisses ωc1 et ωc2 pour lesquelles l’amplitude vaut UCm max√
2

;

• En déduire ∆ω = ωc2 − ωc1.

Méthode
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