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OSC2 : Étude de l’oscillateur amorti

y

⇔

L
i

C

i

Après avoir montré que le circuit LC donne lieu à des oscillations
électriques de la même façon qu’un système masse-ressort sans frot-
tements peut osciller indéfiniment en mécanique, nous allons nous
intéresser au cas réel où les oscillations subissent un amortissement.

y

⇔
R

i

L
i

C

i

En mécanique ce sont les frottements qui sont responsables de
l’amortissement des oscillations, en électricité il est dû au ca-
ractère résistif du circuit. On adopte dans ce chapitre le modèle
du frottement fluide en introduisant une force de frottement qui
s’oppose toujours au déplacement et dont l’intensité est propor-
tionnelle à la vitesse : −→

f = −α −→v avec α > 0 constant.
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À savoir par
✓ Connaissances sur l’oscillateur harmonique.

À savoir faire
✓ Écrire sous forme canonique l’équation différentielle qui caractérise l’évolution d’une grandeur élec-

trique afin d’identifier la pulsation propre et le facteur de qualité.
✓ Déterminer le régime permanent sans calculs.
✓ Identifier la nature de la réponse libre en fonction de la valeur du facteur de qualité.
✓ Déterminer la réponse dans le cas d’un régime libre ou indiciel en recherchant les racines du polynôme

caractéristique et en tenant compte des conditions initiales.
✓ Déterminer un ordre de grandeur de la durée du régime transitoire, selon la valeur du facteur de

qualité.
✓ Effectuer un bilan de puissance ou d’énergie.
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I Observations expérimentales
I.1 Oscillateur mécanique

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/Oscillat3_FJ.phphttps://
phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/oscillateur_horizontal.php

Simulation : influence des frottements

— Évolution de x(t) avec x0 = 5 cm, v0 = 0 cm·s−1, m = 0,5 kg, k = 1,5 N·m−1, h = 0,6 kg·s−1

— Effet d’une diminution des frottements (h = 0,1 kg·s−1) :

— Effet d’une augmentation des frottements (h = 2 kg·s−1) :

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/Oscillat3_FJ.phphttps://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/oscillateur_horizontal.php
https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/Oscillat3_FJ.phphttps://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/oscillateur_horizontal.php
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— Que peut-on dire de l’état final dans les 3 cas ? Quel paramètre détermine le type de régime transitoire
(oscillant ou non) ?

I.2 Oscillateur électrique

https://phyanim.sciences.univ-nantes.fr/Elec/Transitoire/Condensateur1.php
on fait varier la valeur de R, les valeurs de L et C étant fixes (L = 0,40 H et C = 80,5 nF).

Simulation : influence de la résistance

— Réponse indicielle :

C =80,5 nF, L = 0,40 H, R = 1 kW C = 80,5 nF, L =0,70 H, R =5 kW

L’état final est-il modifié lorsque R varie ? Quelle différence observe-t-on sur les signaux lorsque R
prend les valeurs extrêmes proposées (R = 1 kW et R = 5 kW).

— Mêmes questions en régime libre (condensateur chargé à l’état initial).

https://phyanim.sciences.univ-nantes.fr/Elec/Transitoire/NRJ_FJ.php
Simulation : aspects énergétiques

Comment évoluent les énergies Ee (énergie électrique dans le condensateur), Emag (énergie magnétique
dans la bobine), et Eem (énergie électromagnétique totale) lorsque la résistance du circuit est faible ?

Même question lorsque la résistance du circuit est élevée.

https://phyanim.sciences.univ-nantes.fr/Elec/Transitoire/Condensateur1.php
https://phyanim.sciences.univ-nantes.fr/Elec/Transitoire/NRJ_FJ.php
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I.3 Analogies mécanique-électrique
Les résultats précédent permettent d’établir des analogies entre les oscillateurs amortis mécanique et
électrique :

Oscillateur mécanique Oscillateur électrique

Em

Ep

Ec

frottement

masse qui oscille

position x(t)

vitesse v(t)

II Mise en équation
II.1 État final
Avant de réaliser de longs calculs (équations différentielles et résolutions), il est tout à fait possible de
déterminer complètement l’état final du système, une fois le régime transitoire terminé :
— la position d’équilibre de la masse pour l’oscillateur mécanique → voir OSC1, avec la force de

frottement fluide f = −α −→v = −→0 à l’équilibre.
— les tensions et intensités pour t → ∞ dans le circuit pour l’oscillateur électrique → on utilise les

équivalents des dipôles en régime permanent (rappel EL1), méthode ci-dessous.

❶ Reproduire le circuit électrique une fois le nouveau régime permanent atteint en remplaçant
chaque condensateur par un interrupteur ouvert et chaque bobine par un fil.

❷ En déduire que les tensions aux bornes des bobines et les intensités à travers les condensateurs
sont nulles : uL(∞) = 0 et iC(∞) = 0.

❸ Appliquer les lois des nœuds, les lois des mailles et les relations intensité-tension pour déter-
miner les autres grandeurs électriques.

Méthode

Déterminer les grandeurs électriques à la fin du régime transitoire lors de la réponse à un échelon
de tension du RLC série en suivant la méthode ci-dessus.

Démonstration
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II.2 Forme canonique de l’équation différentielle

Forme canonique de l’équation différentielle pour un oscillateur amorti :

d2s

dt2 + ω0

Q

ds

dt
+ ω2

0s = ω2
0s(∞)

ω0 = pulsation propre en rad·s−1

avec : Q = facteur de qualité (grandeur sans dimension)
s(∞) = valeur de s une fois le régime permanent atteint

Formule

II.3 Mise en équation de l’oscillateur mécanique amorti par frottement fluide

❶ Définir le système (= l’objet dont on étudie le mouvement).

❷ Préciser le référentiel d’étude Rg, supposé galiléen à l’échelle de l’expérience.

❸ Choisir le système de coordonnées adapté à la description du mouvement.

❹ Faire un grand schéma clair sur lequel vous représentez le système et la base choisie.

❺ Définir les notations nécessaires associées aux grandeurs dont seules les valeurs sont fournies
(par exemple : m pour la masse, v0 pour la vitesse initiale, etc).

❻ Faire un bilan des actions mécaniques précis et complet : les nommer et en donner leurs
expressions. Représenter toutes les forces sur le schéma.

❼ Écrire « On applique le Principe Fondamental de la Dynamique au système dans le référentiel
...... galiléen ».

❽ Projeter l’équation vectorielle dans la base associée au système de coordonnées choisi
pour repérer la position du système.

❾ Mettre l’équation différentielle sous forme canonique, c’est à dire avec un coefficient 1 devant
le terme de la dérivée d’ordre 2 (voir formule dans la partie II.2).

❿ Déterminer les expressions de la pulsation propre ω0 et du facteur de qualité Q en fonction
des caractéristiques de l’oscillateur (k, m et α).

Méthode

Appliquer la méthode ci-dessus pour établir l’équation différentielle vérifiée par la position d’une
masse m accrochée à l’extrémité droite d’un ressort horizontale (fixé au mur à son extrémité gauche).
La force de frottement fluide est sonnée par −→

f = −α−→v , avec α = coefficient de frottement fluide.

Application directe
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II.4 Mise en équation du circuit RLC série

Pour établir l’équation différentielle vérifiée par une grandeur électrique s (uc, i, q) d’un circuit
RLC soumis à un échelon de tension ou en régime libre :

❶ Représenter le circuit électrique étudié, en nommant et fléchant SUR le circuit toutes les
tensions et intensités.

❷ Lister les grandeurs électriques (tension, intensité) inconnues (qui ont du être représentées sur
le circuit précédemment). Le nombre de grandeurs électriques inconnues vous donne le nombre
d’équations indépendantes à écrire.

❸ Écrire toutes les relations indépendantes possibles :
— lois des mailles indépendantes
— lois des nœuds
— relations intensité-tension pour tous les dipôles

❹ Combiner ces relations entre elles pour ne conserver que la grandeur qui nous intéresse.

❺ Mettre l’équation différentielle sous forme canonique, c’est à dire avec un coefficient 1 devant
le terme de la dérivée d’ordre 2 (voir formule dans la partie II.2).

❻ Déterminer les expressions de la pulsation propre ω0 et du facteur de qualité Q en fonction
des résistances, inductances et capacités présentes dans le circuit.

Méthode
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Appliquer la méthode ci-dessus pour établir l’équa-
tion différentielle vérifiée par la tension aux bornes du
condensateur uC(t) pour le circuit RLC série soumis
à un échelon de tension E. Mettre l’équation différen-
tielle sous forme canonique et identifier les expressions
de la pulsation propre ω0 et le facteur de qualité Q.

E

i

R L

C uC

uLuR

+⃝

Application directe

Déterminer l’équation différentielle vérifiée par la charge du condensateur q(t) pour le circuit RLC
série soumis à un échelon de tension E. Mettre l’équation différentielle sous forme canonique.

Application directe

Déterminer l’équation différentielle vérifiée par l’intensité i(t) traversant le circuit RLC série soumis
à un échelon de tension E. Mettre l’équation différentielle sous forme canonique.

Application directe
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Remarques
• ω0 et Q ne dépendent pas de la grandeur étudiée (uC , uL, i, q), ils dépendent des valeurs

des composants du circuit : R, L, C.
• Les calculs strictement identiques dans le cas de la réponse en regime libre (en enlevant E).

On obtient des équations différentielles strictement identiques, mais sans second membre.

III Résolution de l’équation différentielle
III.1 Méthode de résolution

Pour résoudre d2s

dt2 + ω0

Q

ds

dt
+ ω2

0s = ω2
0s(∞) , il faut :

❶ Résoudre l’équation homogène (sans second membre) : d2sH

dt2 + ω0

Q

dsH

dt
+ ω2

0sH = 0 (EH)

a) Écrire l’équation caractéristique (EC) : r2 + ω0

Q
r + ω2

0 = 0

b) Calculer le discriminant de (EC) : ∆ = 4ω2
0

(
1

4Q2 − 1
)

c) Déterminer le signe de ∆ grâce aux valeurs numériques fournies.

d) En déduire les racines r de l’équation caractéristique (EC) :

� Si ∆ < 0 ⇔ Q >
1
2 : 2 racines complexes conjuguées : r1,2 = − ω0

2Q
± jω0

√
1 − 1

4Q2

� Si ∆ > 0 ⇔ Q <
1
2 : 2 racines réelles : r1,2 = − ω0

2Q
± ω0

√
1

4Q2 − 1

� Si ∆ = 0 ⇔ Q = 1
2 : 1 racine double : r = −ω0

e) En déduire les solutions générales sH(t) de l’équation homogène (EH), en introduisant
deux constantes d’intégration A et B :

� Si ∆ < 0 ⇔ Q >
1
2 : sH(t) = eRe(r)t

(
A cos(Ωt)+B sin(Ωt)

)
avec Ω = ω0

√
1 − 1

4Q2 = |Im(r)|

� Si ∆ > 0 ⇔ Q <
1
2 : sH(t) = Aer1t + Ber2t

� Si ∆ = 0 ⇔ Q = 1
2 : sH(t) = (At + B)ert

❷ Déterminer la solution particulière sP recherchée sous la même forme que le
second membre, c’est-à-dire sous la forme d’une constante dans ce chapitre : sP = s∞

❸ La solution générale recherchée est la somme de la solution homogène et de la solution
particulière :

s(t) = sH(t) + sP

❹ Déterminer les constantes d’intégration A et B à l’aide des conditions initiales : s(0) et
sa dérivée première ds

dt
(0).

Méthode
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III.2 Conditions initiales
On a obtenu une équation différentielle du 2e ordre vérifiée par s (position pour l’oscillateur mécanique,
tension, intensité, charge pour l’oscillateur électrique), dont la résolution fait intervenir 2 constantes
d’intégration, que l’on détermine avec les deux conditions initiales s(0+) et ds

dt
(0+).

Dans le cas de l’oscillateur mécanique, les conditions initiales sont généralement explicitées dans l’énoncé
de la situation.

Pour déterminer les conditions initiales du circuit RLC série :

❶ Déterminer les valeurs des intensités et tensions AVANT la fermeture de l’interrupteur.

❷ Utiliser la continuité de la charge du condensateur (ou de la tension aux bornes du conden-
sateur) et de l’intensité du courant à travers une bobine, pour déterminer ces valeurs JUSTE
APRÈS la fermeture de l’interrupteur (t = 0+).

❸ Les autres grandeurs électriques à t = 0+ se déterminent en appliquant les relations intensi-
té/tension à t = 0+ et les lois des mailles et des nœuds à t = 0+. On en déduit les valeurs de
s(0+) et ds

dt
(0+).

Méthode

Appliquer la méthode précédente pour déterminer les valeurs des grandeurs électriques uC , q, i et
uL et leurs dérivées premières à t = 0+ lors de la réponse à un échelon de tension.

Application directe
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III.3 Cas Q >
1
2 Régime pseudo-périodique

On s’intéresse à la grandeur uC dans le circuit RLC série, dont on a montré qu’elle vérifie l’équation

différentielle : d2uC

dt2 + ω0

Q

duC

dt
+ ω2

0uC = ω2
0E, avec ω0 = 1√

LC
et Q = 1

R

√
L

C
.

Q1. Calculer la valeur de ω0 et Q dans la 1re simulation au I.2 (C =80,5 nF, L =0,40 H, R =1 kW)
et vérifier qu’on avait bien Q >

1
2.

Q2. En suivant scrupuleusement la méthode donnée au III.1 , déterminer la solution générale uC(t)
et la mettre sous la forme uC(t) = e− t

τ

(
A cos(Ωt) + B sin(Ωt)

)
+ E. Identifier les expressions

de τ et Ω en fonction de Q et ω0. Quelles sont les dimensions de ces deux grandeurs ? À quoi
correspondent-elles ? Faire les AN pour déterminer leurs valeurs.

Q3. Déterminer les constantes d’intégration en utilisant les conditions initiales déterminées au III.2.
Q4. Tracer l’allure de uC(t) avec votre calculatrice, décrire l’évolution de la courbe obtenue et

vérifier la cohérence avec la simulation du I.2 .

Exercice de cours A⃝
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Remarque
Avec la formule trigo : cos(a + b) = cos a cos b − sin a sin b, on peut mettre uC sous la forme :

uC(t) = E + Ke−t/τ cos(Ωt + φ)

uC(t) = E + Ke−t/τ cos(Ωt + φ)
donc uC(t) − E est le produit d’une fonction sinusoïdale de pulsation Ω et d’une fonction expo-
nentielle décroissante e− t

τ , qui décroit sur une durée caractéristique τ .
⇒ La tension uC oscille avant de se stabiliser à sa valeur imposée par le générateur :

t

uC

E

— La période des oscillations, appelée pseudo-période, vaut T = 2π

Ω avec Ω = ω0

√
1 − 1

4Q2 .

On a la relation T = T0√
1 − 1

4Q2

> T0.

— L’amortissement des oscillations est caractérisée par la constante de temps τ = 2Q

ω0
.

Durée caractéristique du régime transitoire pseudo-périodique : quelques τ = 2Q

ω0
⇒ il est d’autant plus long que le facteur de qualité Q est élevé (et donc que la valeur de
la résistance R est faible à L et C fixés)

Propriétés du régime pseudo-périodique Q >
1
2
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Décrément logarithmique δ : il mesure la diminution de l’amplitude des oscillations pendant
une période, caractérisant ainsi leur amortissement :

δ = ln
(

A(t)
A(t + T )

)

avec A = amplitude des oscillations
et T = pseudo-période des oscillations

Définition

Déterminer l’expression du décrément logarithmique en fonction de Q.
Application directe

Pour Q ≫ 1, la pseudo-période vaut T = 2π

Ω = 2π

ω0

√
1 − 1

4Q2

≈ 2π

ω0
= T0.

⇒ Pour Q ≫ 1, la pseudo-pulsation est quasiment égale à la pulsation propre : Ω ≈ ω0
(et la pseudo-période est quasiment égale à la période propre : T ≈ T0).

Nombre d’oscillations pendant le régime transitoire N = durée du régime transitoire
durée d’1 oscillation

avec : durée du régime transitoire = quelques τ (≈ 4τ) et durée d’une oscillation = T

N ≈ 4τ

T
≈ 4 × 2Q

ω0
× ω0

2π
≈ 1, 3Q

Un système peu amorti effectue environ Q oscillations durant le régime transitoire.

→ En régime pseudo-périodique peu amorti, le facteur de qualité Q donne l’ordre
de grandeur du nombre d’oscillations avant l’établissement du régime permanent.

Systèmes peu amortis Q ≫ 1

Déterminer le nombre d’oscillations observées pendant le régime pseudo-périodique de la 1re simu-
lation au I.2 et vérifier avec le critère donné ci-dessus.

Application directe
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III.4 Cas Q <
1
2 Régime apériodique

Q1. Calculer la valeur de ω0 et Q dans la 2e simulation (C =80,5 nF, L =0,40 H, R =5 kW) et vérifier
qu’on avait bien Q <

1
2.

Q2. En suivant scrupuleusement la méthode donnée au III.1 , déterminer numériquement r1 et r2
puis déterminer l’expression numérique de la solution générale uC(t).

Q3. Déterminer les constantes d’intégration en utilisant les conditions initiales déterminées au III.2.
Q4. Tracer l’allure de uC(t) avec votre calculatrice, décrire l’évolution de la courbe obtenue et

vérifier la cohérence avec la simulation du I.2 .

Exercice de cours B⃝
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Remarque
Les 2 racines r1 et r2 sont négatives (sinon on aurait divergence en +∞).

uC(t) = E + Aer1t + Ber2t

donc uC − E est la somme de deux exponentielles décroissantes (r1 et r2 étant négatives),
que l’on peut mettre sous la forme : uC(t) − E = Ae−t/τ1 + Be−t/τ2 en posant τ1 et τ2 les
temps caractéristiques de décroissance des deux exponentielles, tels que : r1 = − 1

τ1
et r2 = − 1

τ2
.

Pour r1 < r2, on a donc τ1 < τ2, l’exponentielle e−t/τ1 décroît donc plus rapidement que e−t/τ2 .
L’exponentielle qui impose la fin du régime transitoire est donc e−t/τ2 car elle décroît moins
rapidement.

Pour déterminer l’ordre de grandeur de la durée du régime transitoire apériodique, il faut donc
estimer un ordre de grandeur de τ2.

Propriétés du régime apériodique Q <
1
2
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Déterminons l’expression de τ2 en fonction de ω0 et Q :
τ2 = − 1

r2
= − 1

− ω0

2Q
+ ω0

√
1

4Q2 − 1
= 1

ω0

2Q

(
1 −

√
1 − 4Q2

)
Pour x ≪ 1, on peut faire un développement limité :

√
1 − x ≈ 1 − x

2 .

On obtient : τ2 = 1
ω0Q

Durée caractéristique du régime transitoire apériodique : quelques τ2 = 1
Qω0

⇒ il est d’autant plus court que le facteur de qualité augmente (tout en restant inférieur à
1/2), c’est-à-dire lorsque la valeur de R diminue à C et L constants.

L’influence du facteur de qualité sur la durée du régime transitoire apériodique
(τ ∝ 1/Q) est inverse de celle sur la durée du régime transitoire pseudo-périodique
(τ ∝ Q).

Systèmes très amortis Q ≪ 1

III.5 Cas Q = 1
2 Régime critique

Q1. Déterminer la valeur de R à choisir pour avoir un facteur de qualité égal à 1
2 avec les conditions

de la simulation : L = 0,4 H et C = 80,5 nF.
Q2. Déterminer la valeur de la racine double r de l’équation caractéristique.
Q3. Déterminer les constantes d’intégration en utilisant les conditions initiales déterminées au III.2.
Q4. Tracer l’allure de uC(t) avec votre calculatrice, comparer avec la courbe obtenue dans le cas du

régime apériodique.

Exercice de cours C⃝
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uC(t) = E + (At + B)ert

avec r = − ω0

2 × 1
2

= −ω0 donc uC est une fonction faisant intervenir une exponentielle

décroissante, qui décroit donc avec un temps caractéristique de durée de 1/ω0.

Durée caractéristique du régime transitoire en régime critique : quelques τ = 1/ω0

Propriétés du régime critique Q = 1
2

III.6 Aspects énergétiques de la réponse indicielle du circuit RLC série
Rappel du chapitre EL2 : Pour établir le bilan de puissance il faut multiplier la loi des mailles par
l’intensité i : E × i = uc × i + uR × i + uL × i, avec

— la puissance algébriquement fournie par le générateur E × i ;

— la puissance algébriquement reçue par le condensateur : uc × i = uc × C
duc

dt
= d

dt

(1
2Cu2

c

)
, où

1
2Cu2

c est l’énergie stockée par le condensateur ;

— la puissance algébriquement reçue par la bobine : uL × i = i × L
di

dt
= d

dt

(1
2Li2

)
, où 1

2Li2 est
l’énergie stockée par la bobine ;

— la puissance algébriquement reçue par la résistance : Ri2 > 0, donc réellement reçue à tout instant,
elle est entièrement dissipée sous forme d’énergie thermique.
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IV En résumé

Équation différentielle d’un oscillateur amorti :

d2s

dt2 + ω0

Q

ds

dt
+ ω2

0s = ω2
0s(∞)

s = grandeur électrique
ω0 = pulsation propre en rad/s) } constantes positives qui dépendent des

paramètres de l’oscillateurQ = facteur de qualité (sans unité)
s(∞) = valeur finale atteinte par s à la fin du régime transitoire (après quelques τ)

pulsation propre ω0 facteur de qualité Q

Oscillateur électrique 1√
LC j

1
R

√
L

C

l

Oscillateur mécanique
√

k

m

l

j

√
km

α

Différents régimes transitoires :

t

s
critique

apériodique

pseudo-périodique

Régime ∆ Q τ

apériodique ∆ > 0 Q <
1
2

1
ω0Q j

critique ∆ = 0 Q = 1
2

1
ω0 j

pseudo-périodique ∆ < 0 Q >
1
2

2Q

ω0 j

Durée du régime transitoire :
• La durée du régime transitoire apériodique diminue lorsque Q augmente.
• C’est dans le cas du régime critique que le régime permanent est atteint le plus rapidement

(et sans oscillation), à ω0 fixé.
• La durée d’un régime transitoire pseudo-périodique augmente lorsque Q augmente, et Q donne

approx. le nombre d’oscillations du système avant d’atteindre le régime permanent.

Q

Q = 1
2Q <

1
2 Q >

1
2

τ = 1
ω0Q

τ ↘ τ = 2Q

ω0
τ ↗τ = 1

ω0

Cas des systèmes faiblement amortis : Q ≫ 1
2 :

— Q très élevé : nombreuses oscillations et durée du régime transitoire très élevée
— Ω (pseudo-pulsation) est très proche de ω0 (pulsation propre)

Synthèse
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V Portrait de phase

V.1 Définition et propriétés

Portrait de phase : Pour un système dont l’évolution au cours du temps t est décrit par la
fonction s(t), on appelle portrait de phase la représentation de ṡ en fonction de s.
Un portrait de phase est donc une courbe qui montre les positions au cours du temps t d’un
point représentatif M d’abscisse s et d’ordonnée ṡ dans un repère cartésien.

s

ṡ

Méthode

— Sur un portrait de phase la courbe est paramétrée par t, on l’oriente donc selon t croissant.

— Le demi-plan supérieur (ṡ > 0) correspond à s croissant (et le demi-plan inférieur correspond
à s décroissant) donc les courbes sont nécessairement parcourues dans le sens horaire.

— Pour un point situé sur l’axe des abscisses, ṡ = 0 donc s est constant ou extrémal (= point
de rebroussement).

Propriétés

V.2 Application aux oscillateurs amortis

Observer et représenter qualitativement les portraits de phases dans le cas des différents régimes et
avec différentes conditions initiales avec la simulation : https://phyanim.sciences.univ-nantes.
fr/Meca/Oscillateurs/ressort.php?typanim=Javascript

(où ω0 =
√

k
m

et λ = ω0
2Q

= α
2m

, en ordonnée est portée v
ω0

)

Simulation : portraits de phase de l’oscillateur mécanique

x

ẋ

Q = 5
(x0 = 100 mm, v0 = 0 m·s−1, λ = 0,2 s−1,

ω0 = 2 rad·s−1)

x

ẋ

Q = 0, 5
(x0 = 100 mm, v0 = 0 m·s−1, λ = 2 s−1,

ω0 = 2 rad·s−1)

x

ẋ

Q = 0, 25
(x0 = 100 mm, v0 = 0 m·s−1, λ = 2 s−1,

ω0 = 1 rad·s−1)

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort.php?typanim=Javascript
https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort.php?typanim=Javascript
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x

ẋ

Q = 5
(x0 = 0 mm, v0 = 100 m·s−1, λ = 0,2 s−1,

ω0 = 2 rad·s−1)

x

ẋ

Q = 2, 5
(x0 = 50 mm, v0 = 100 m·s−1,
λ = 0,4 s−1, ω0 = 2 rad·s−1)

x

ẋ

Q = 0, 5
(x0 = −100 mm, v0 = 100 m·s−1,

λ = 1,7 s−1, ω0 = 1,7 rad·s−1)

Remarque
Pour un oscillateur harmonique, le portait de phase est une courbe fermée (une ellipse).

Cas des circuits RLC et LC en régime libre :

q(t) et portraits de phase dans les différents régimes d’oscillations (amorties ou non)
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