
OSC1 Page 1 / 13 MPSI1 - 2025/2026

OSC1 : Étude de l’oscillateur harmonique

De nombreux problèmes de physique, mais également de chimie ou de biologie peuvent être décrits
par l’utilisation d’un modèle physique, c’est à dire un ensemble d’hypothèses et de lois « mathéma-
tiques » permettant de décrire simplement un problème réel. Ce chapitre s’intéresse à un modèles très
utilisé en physique : l’oscillateur harmonique, utilisé pour étudier les systèmes qui ont un mouvement
d’oscillations :

On accroche une masse à un ressort fixé à une potence. On écarte la masse de
sa position d’équilibre, puis on la lâche. On étire le ressort.
1. Que se passe-t-il ?
2. Représenter la position y de la masse en fonction du temps.
3. Quelle fonction mathématique permettrait de modéliser cette évolution ? y

Expérience de cours
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À savoir par
✓ Connaître l’expression de la force de rappel élastique.
✓ Connaître les définitions : pulsation, fréquence, période propre d’oscillations, amplitude, phase.
✓ Connaître les expressions de l’énergie cinétique, de l’énergie potentielle de pesanteur, de l’énergie

potentielle élastique et de l’énergie mécanique.

À savoir faire
✓ Schématiser et exprimer la force de rappel élastique sur un système.
✓ Déterminer les caractéristiques du mouvement d’un oscillateur à partir de l’évolution temporelle d’une

grandeur caractéristique du système.
✓ Déterminer et résoudre l’équation différentielle du mouvement d’un système masse-ressort sans frot-

tement.
✓ Exploiter l’analogie du système masse-ressort sans frottement et l’oscillateur harmonique électrique.
✓ Établir le bilan énergétique d’un oscillateur non amorti.
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I Comment établir l’équation différentielle de l’oscillateur harmonique ?
I.1 Position du problème
Dans ce chapitre, nous allons étudier le système oscillant le plus simple : le système {masse-ressort}. Il
est constitué d’une masse m, dont on étudie le mouvement, accrochée à un ressort de masse supposée
négligeable. La masse est astreinte à se déplacer horizontalement sur un support sur lequel les frotte-
ments peuvent être négligés.

Ressort : dispositif mécanique pouvant se déformer, c’est-à-dire s’allonger et se raccourcir.

Longueur à vide : on la note ℓ0, c’est la longueur prise par le ressort non contraint, lorsqu’il
est posé sur une table horizontale.

Longueur instantanée : on la note ℓ(t), c’est la longueur du ressort hors de la position de
repos (différente de sa longueur à vide).

Définitions

Force de rappel élastique :
La force de rappel élastique exercée par un ressort de lon-
gueur à vide ℓ0, de constante de raideur k et de longueur
instantanée ℓ(t) s’écrit :

−→
Fél = −k

(
ℓ(t) − ℓ0

)−→u

−→u
ℓ0

ℓ(t)

avec −→u = vecteur unitaire dirigé dans le sens d’allongement du ressort, c’est-à-dire que
−→u est dirigé du point d’attache du ressort vers la masse m.

Formule

Pour poser un problème de mécanique avec un ressort :

❶ Définir le système étudié (c’est-à-dire l’objet dont on étudie le mouvement).

❷ Définir le référentiel d’étude (c’est-à-dire l’objet de référence par rapport auquel on va étudier
le mouvement du système)

❸ Faire un schéma sur lequel apparaissent :
— le ressort, avec le symbole :
— l’axe orienté qui va du point d’attache vers la masse m

— le vecteur unitaire −→u imposé par le sens de l’axe
— l’origine de l’axe
— la longueur ℓ du ressort (représentée par une double flèche avec « ℓ » dessus)

❹ Faire un bilan des actions mécaniques s’exerçant sur le système étudié, et représenter les
forces correspondantes sur le schéma.

❺ Écrire la force de façon générale −→
Fél = −k(ℓ − ℓ0)−→u .

❻ En s’aidant du dessin, relier la longueur du ressort ℓ à la position de la masse sur l’axe, notée
x si l’axe s’appelle (Ox).

❼ Vérifier la validité physique de la formule.

Méthode
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Appliquer la méthode ci-dessus pour étudier le mouvement du système constitué d’une masse m
accrochée à un ressort de masse supposée négligeable astreint à se déplacer horizontalement sur un
support sur lequel les frottements peuvent être négligés.

Démonstration
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I.2 Étude des positions d’équilibre

Position d’équilibre : c’est une position telle que si on y pose le système sans vitesse initiale
alors il y reste. On la note xéq.
En une position d’équilibre, la somme des forces s’exerçant sur un système est nulle :

∑ −−→
Fext = −→0

La réciproque est fausse → principe d’inertie.

Définition et propriété

Pour déterminer la/les position(s) d’équilibre d’un système :

❶ Écrire qu’à l’équilibre : −→v = −→0 et
∑ −−→

Fext = −→0 .
❷ Isoler la longueur du ressort à l’équilibre ℓéq et l’exprimer en fonction de ℓ0, m, g et k.
❸ Vérifier la cohérence physique :

— vérifier l’homogénéité de la formule (penser au fait que [kℓéq] = [mg] ;
— comparer ℓéq à ℓ0, en lien avec l’effet de la masse.

Méthode

Appliquer la méthode ci-dessus pour démontrer que pour le ressort horizontal étudié au I.1, la
longueur du ressort à l’équilibre est égale à sa longueur à vide.

Démonstration

Une masse m est attachée à l’extrémité d’un ressort vertical
de longueur à vide ℓ0 et de constante de raideur k.
Q1. Déterminer dans les deux cas ci-dessous l’expression de la

longueur du ressort à l’équilibre. Comparer à la longueur à
vide.

Q2. Déterminer l’expression de la force de rappel élastique en
faisant intervenir la position z.

z

−→uz

O

z

−→uz

O

ℓéq

Exercice de cours A⃝



OSC1 Page 5 / 13 MPSI1 - 2025/2026

I.3 Équation différentielle de l’oscillateur harmonique

Pour établir l’équation différentielle de l’oscillateur harmonique :

❶ Énoncer le Principe Fondamental de la Dynamique (2ème loi de Newton) en référentiel galiléen.

❷ L’appliquer au système étudié.

❸ Projeter l’équation précédente selon l’axe sur lequel se fait le mouvement. On obtient une
équation qui relie la position x (si la direction du mouvement est notée (Ox)) et sa dérivée
seconde ẍ : c’est une équation différentielle d’ordre 2.

❹ Mettre l’équation différentielle sous forme canonique, c’est à dire avec un cœfficient 1 devant
le terme de la dérivée d’ordre 2 (voir formule ci-dessous).

❺ Donner l’expression de la pulsation propre ω0 en fonction des caractéristiques de l’oscillateur
k et m.

Méthode

Forme canonique de l’équation différentielle pour un oscillateur non amorti :

ẍ + ω2
0x = ω2

0xéq

avec : ω0 = pulsation propre en rad·s−1

avec : xéq = position d’équilibre

Formule
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Appliquer la méthode précédente pour établir l’équation différentielle régissant le mouvement de la
masse accrochée à un ressort horizontal (situation du I.1).

Démonstration

Établir l’équation différentielle régissant le mouvement d’une masse m accrochée à un ressort vertical
de constante de raideur k (situation de gauche de l’exercice A⃝).

Exercice de cours B⃝
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II Comment résoudre l’équation différentielle de l’OH ?
II.1 Expression de la solution

Un oscillateur harmonique de pulsation propre ω0 oscillant autour de la position xéq régi par
l’équation différentielle :

ẍ + ω2
0x = ω2

0xéq

a pour solution générale :

x(t) = A cos(ω0t) + B sin(ω0t) + xéq avec A et B deux constantes réelles

que l’on peut aussi mettre sous la forme :

x(t) = Xm cos(ω0t + φ) + xéq avec A une constante réelle et φ ∈ [−π, π]

Signification des termes :

• Amplitude Xm : c’est la valeur maximale du déplacement de la masse par rapport à sa
position d’équilibre, c’est-à-dire la valeur maximale de |x − xéq|

• Phase à l’origine φ : c’est la valeur de la phase à l’origine des temps (pour t = 0), elle
donne la valeur initiale du signal : x(0) = Xm cos(φ) + xéq

• Pulsation propre ω0 : ω0 =
√

k

m
, avec k = constante de raideur du ressort en N·m−1, et m

= masse de l’objet en kg.
La pulsation propre ω0 est reliée à la fréquence f par la relation ω0 = 2π × f , où f représente
le nombre d’oscillations par unité de temps (rappel : f = 1

T
où T est la période = durée d’une

oscillation).

• xéq : position d’équilibre de la masse.

• Couples de valeurs (Xm, φ) et (A, B) : ce sont les constantes d’intégration, leurs valeurs
dépendent de 2 conditions initiales : la position initiale x(t = 0) et la vitesse initiale ẋ(t = 0).

Formule

II.2 Méthode de résolution

Méthode pour résoudre l’équation différentielle ẍ + ω2
0x = ω2

0xéq :

❶ Écrire la solution générale : x(t) = A cos(ω0t) + B sin(ω0t) + xéq

❷ Déterminer les deux constantes d’intégration à l’aide des deux conditions initiales : la position
initiale x(t = 0) et la vitesse initiale ẋ(t = 0). Pour cela il faut :
1. Exprimer la position initiale : x(t = 0) = A+xéq et égaliser avec la valeur de x(t = 0) fournie

par l’énoncé. On en déduit la valeur de A.
2. Dériver x par rapport au temps : ẋ(t) = −Aω0 sin(ω0t) + Bω0 cos(ω0t)
3. Exprimer la vitesse initiale : ẋ(t = 0) = Bω0 et égaliser avec la valeur de ẋ(t = 0) fournie

par l’énoncé. On en déduit la valeur de B.

Méthode
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Remarques

• C’est une équation différentielle d’ordre 2 donc 2 constantes à déterminer donc 2 condi-
tions initiales à établir.

• Les calculs sont souvent plus simples avec la forme en x(t) = A cos(ω0t) + B sin(ω0t) + xéq
du fait de cos(0) = 1 et sin(0) = 0.

• On peut passer d’une forme de la solution à l’autre avec la formule trigonométrique :
cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

• On peut utiliser l’autre expression de la solution : x(t) = Xm cos(ω0t + φ) + xéq pour
déterminer les constantes, en suivant la même méthode.

Résoudre l’équation différentielle de l’oscillateur harmonique ẍ + ω2
0x = ω2

0xéq en tenant compte
des conditions initiales suivantes et représenter l’allure de x(t) : x(0) = xéq + a et ẋ(0) = 0

Application directe

t

x(t)

xéq

Même question pour x(0) = xéq et ẋ(0) = v0

Application directe

t

x(t)

xéq
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Même question pour x(0) = xéq + a et ẋ(0) = v0

Application directe

t

x(t)

xéq

On a mesuré x en fonction du temps pour une masse m accrochée à l’extrémité d’un ressort
horizontal, qui se déplace sans frottements. On obtient le graphique ci-dessous :

x(cm)

t (s)0
1 s

1 cm

1. Donner la solution de l’équation différentielle qui régit ce mouvement sous la forme d’un cosinus.
2. Déterminer les caractéristiques de l’oscillation : amplitude, pulsation propre, phase à l’origine.

Application directe
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II.3 Introduction à la représentation de Fresnel

La représentation de Fresnel est la représentation graphique de signaux dépendant du
temps de façon sinusoïdale → animation ici

À tout signal sinusoïdal s(t) = Sm cos(ωt + φ), on associe un
vecteur −→

S dans le plan cartésien (Oxy) :
• de norme

∥∥∥−→
S

∥∥∥ égale à l’amplitude du signal sinusoïdal Sm :
∥∥∥−→

S
∥∥∥ = Sm

• et faisant un angle de ωt + φ avec l’axe (Ox) :

̂(−→ux,
−→
S

)
= ωt + φ

x
O

y

Sm

−→
S (t)

s(t)

ωt + φ −→
S (t = 0)

s(0)
φ

Le vecteur −→
S tourne dans le plan (Oxy), autour de l’axe (Oz), à la vitesse angulaire ω, il fait

un tour en T = 2π

ω
.

Utilisation pour sommer des signaux sinusoïdaux :

En notant −→s = −→s1 + −→s2 , on a : s2 = s2
1 + s2

2 + 2s1s2 cos(φ2 − φ1)
xO

y

−→s1(t)

−→s2(t)

φ1

φ2

−→s1(t) + −→s2(t)

Représentation de Fresnel

III Aspects énergétiques

— Énergie cinétique Ec d’un point matériel de masse m, ayant la vitesse v :

Ec = 1
2mv2 avec : v2 =

∥∥∥−→v
∥∥∥2

— Énergie potentielle de pesanteur Epp d’un point matériel de masse m, repéré par
son altitude z :

Epp = ±mgz + K avec K une constante

avec « + » si (Oz) est ascendant ; « − » si (Oz) est descendant

— Énergie potentielle élastique d’un point matériel accrochée à un ressort :

Ep,él = 1
2k

(
ℓ − ℓ0

)2
+ K ′ avec K ′ une constante

Plus la longueur ℓ du ressort est différente de la longueur à vide ℓ0, plus l’énergie emmaga-
sinée par le système est importante.

— Énergie mécanique Em : c’est la somme de ses énergies cinétique Ec et potentielles Ep :

Em = Ec + Ep

Toutes les énergies s’expriment en Joule (J), avec 1 J = 1 kg·m2·s−2.

Formules

https://www.geogebra.org/m/ExSbMxXt


OSC1 Page 11 / 13 MPSI1 - 2025/2026

Que peut-on dire de l’énergie mécanique de l’oscillateur harmonique ?
Démonstration

IV Analogie avec le circuit LC en électricité
IV.1 Circuit étudié et mise en équation

On étudie le circuit composé d’une inductance L en série
avec un condensateur de capacité C, initialement chargé
(à t < 0 la tension à ses bornes vaut U0).
À t = 0 on ferme l’interrupteur.
À t = 0, on ferme l’interrupteur, et le générateur débite
alors dans l’ensemble RC série.

L
i

C

i

uC(t)

uL(t)

Établir l’équation qui régit l’évolution de uC(t) dans le circuit en suivant les étapes suivantes :
1. Écrire la loi des mailles et les relation intensité-tension des dipôles.
2. Combiner ces relations pour établir l’équation différentielle d’ordre 2 en uC .

3. Mettre l’équation différentielle obtenue sous la forme d2uC

dt2 (t) + ω2
0uC(t) = 0, en donnant l’ex-

pression de ω0.

Démonstration
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IV.2 Conditions initiales
La résolution de l’équation différentielle obtenue nécessite la connaissance de deux conditions initiales
pour déterminer les constantes d’intégration.

Pour déterminer les conditions initiales :
1. Déterminer les valeurs de l’intensité i et de la tension uC(t) juste AVANT la fermeture de

l’interrupteur (t < 0).
2. Pour déterminer ces valeurs JUSTE APRÈS la fermeture de l’interrupteur (t = 0+), utiliser :

— la continuité de la tension uC(t) aux bornes du condensateur
— la continuité de l’intensité i(t) du courant qui traverse la bobine

3. Utiliser la relation courant-tension du condensateur pour déterminer la condition initiale sur
duC

dt
.

Méthode

Déterminer les conditions initiales sur uC et duC

dt
pour le circuit représenté au IV.1.

Application directe

IV.3 Résolution de l’équation différentielle

La méthode donnée au II permet de déterminer la solution de l’équation différentielle d2s

dt2 (t)+ω2
0s(t) = 0

avec les conditions initiales définies pour le circuit LC.

La solution générale de l’équation différentielle : d2uC

dt2 (t) + ω2
0uC(t) = 0 avec les conditions

initiales uC(0) = U0 et i0=0 est :

uC(t) = U0 cos(ω0t) avec T0 = 2π

ω0
= 2π

√
LC

uC

t

U0

T0
0

Formule
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Retrouver l’expression de uC(t) pour le circuit LC série à partir de la méthode donnée au II.2.
Démonstration

IV.4 Bilans de puissance et d’énergie

Bilans de puissance et d’énergie pour le circuit LC série
1. Écrire la loi des mailles, en la mettant sous la forme E = ...
2. Multiplier l’équation obtenue par l’intensité i du courant dans le circuit.
3. Identifier et interpréter chaque terme de la relation obtenue : puissance reçue par le condensa-

teur et puissance reçue par la bobine (les 2 dipôles étant représentés en convention récepteur).
4. Vérifier qu’il y a conservation de la puissance, donc de l’énergie.
5. Intégrer par rapport au temps pour obtenir un bilan énergétique, dans lequel apparaissent

les énergies stockées dans le condensateur et la bobine.
6. Déterminer la valeur de l’énergie totale (constante) en utilisant les conditions initiales.

Méthode

Effectuer le bilan de puissance et d’énergie pour le circuit LC.
Démonstration

L’énergie d’un système électrique, dépourvu de résistance, donc sans effet Joule, se conserve au
cours du temps.

Propriété
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