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MECA3 : Approche énergétique du mouvement
d’un point matériel

Le but de ce chapitre est de déterminer le mouvement d’un point matériel dans un référentiel galiléen
en adoptant une approche énergétique. Ces lois énergétiques découlent du principe fondamental de la
dynamique, donc n’apportent aucune information supplémentaire, cependant elles permettent de traiter
plus efficacement certains types de problèmes : ceux des systèmes à un seul degré de liberté.
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À savoir par
✓ Définir travail et puissance d’une force, savoir que la puissance dépend du référentiel.
✓ Connaître les expressions des énergies potentielle de pesanteur, potentielle gravitationnelle et poten-

tielle élastique.
✓ Énoncer le théorème de l’énergie cinétique dans un référentiel galiléen.
✓ Donner le lien entre un champ de force conservative et l’énergie potentielle associée.
✓ Définir l’énergie mécanique et énoncer le théorème de l’énergie mécanique.

À savoir faire
✓ Calculer le travail d’une force sur un trajet, reconnaître son caractère moteur/résistant.
✓ Exploiter les théorème de l’énergie et de la puissance cinétiques.
✓ Établir et utiliser les expressions de l’énergie potentielle de pesanteur, de l’énergie potentielle gravi-

tationnelle et de l’énergie potentielle élastique.
✓ Établir l’expression d’une force à partir de son énergie potentielle, l’expression du gradient étant

donnée.
✓ Déduire qualitativement du graphe d’une fonction énergie potentielle le sens et l’intensité de la force

associée pour une situation à un degré de liberté.
✓ Distinguer force conservative et force non conservative. Reconnaître les cas de conservation de l’énergie

mécanique. Utiliser les conditions initiales.
✓ Exploiter la conservation de l’énergie mécanique pour analyser un mouvement.
✓ Identifier sur un graphe d’énergie potentielle une barrière et un puits de potentiel.
✓ Pour un mouvement conservatif à une dimension, déduire d’un graphe d’énergie potentielle le com-

portement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle.
✓ Déduire d’un graphe d’énergie potentielle l’existence de positions d’équilibre, et la nature stable ou

instable de ces positions.
✓ Dans le cas de petits mouvements au voisinage d’une position d’équilibre stable, faire l’approximation

locale par un puits de potentiel harmonique et établir l’équation différentielle linéarisée du mouvement
au voisinage d’une position d’équilibre.
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I Introduction au concept d’énergie

Comment Aristote définit-il l’énergie ?

Comment définir l’énergie « en langage moderne » ?

Quand les scientifiques utilisent-ils le mot énergie pour la première fois ?

Comment est-elle alors définie ?

À quelle loi implacable l’énergie obéit-elle ?

� Parenthèse culture - Étienne Klein - l’énergie (extrait 1)

On étudie le mouvement d’un pendule, en faisant l’acquisition ou la simulation de sa position an-
gulaire. (fichier pendule2.swf à ouvrir avec https://ruffle.rs/demo/)

Comment calculer l’énergie du pendule à chaque instant ?

Que peut-on dire de l’énergie du pendule ?

Même question en présence de frottements. Comment expliquer cela ?

Expérience - Simulation

Quand un ballon tombe, comment est convertie l’énergie de pesanteur du ballon ?

Comment Max Planck définit-il l’énergie ?

� Parenthèse culture - Étienne Klein - l’énergie (extrait 2)

https://www.youtube.com/watch?v=bFoSmr8TISg
https://ruffle.rs/demo/
https://www.youtube.com/watch?v=bFoSmr8TISg
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II Travail et puissance d’une force
II.1 Travail élémentaire d’une force

Travail élémentaire : Le travail élémentaire de la force −→
f appliquée au point M au cours du

déplacement élémentaire d−−→
OM dans le référentiel R est défini par :

δW/R(−→f ) = −→
f · d−−→

OM

Le travail d’une force s’exprime en Joule (J).

Définition

Remarques

• Si δW/R(−→f ) > 0 le travail de la force est moteur.

• Si δW/R(−→f ) < 0 le travail de la force est résistant.

• Si δW/R(−→f ) = 0 la force ne travaille pas.

II.2 Travail d’une force sur un déplacement

Travail d’une force : Le travail de la force −→
f appliquée au point M au cours d’un déplacement

de M allant de A (à l’instant tA) vers B (à l’instant tB > tA) est la somme des travaux
élémentaires en suivant le chemin suivi par M pour aller de A à B :

WA→B(−→f ) =
∫

M∈
↷

AB
δW (−→f ) =

∫
M∈

↷
AB

−→
f · d−−→

OM

La notation
∫

M∈
↷

AB
indique que le travail doit être calculé par une intervalle curviligne en suivant

la trajectoire suivie par M pour aller de A à B.

Définition

Remarques
• Le travail peut dépendre du chemin suivi.
• Quand la force est en permanence perpendiculaire au mouvement, son travail est nul.
• Après avoir calculé un travail, il faut vérifier la cohérence du signe du travail avec sa

nature motrice (W > 0) ou résistante (W < 0).

Déterminer le travail du poids au cours d’un déplacement horizontal sur une distance AB = d.
Application directe
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On considère le système du pendule simple : un point M de masse m est attaché à l’extrémité d’un
fil de longueur ℓ inextensible et sans masse. On repère la position du point M par l’angle θ que fait
le fil avec la verticale descendante.
Q1. Que peut-on dire du travail de la tension du fil ?
Q2. Déterminer le travail du poids au cours du déplacement du point M de l’angle θA à l’angle θB :

— d’abord en fonction de ℓ, m, g, θA et θB

— ensuite en fonction de m, g, zA et zB

Q3. Le travail du poids est-il moteur ou résistant si θA < θB ?

Retour sur le mouvement du pendule

On considère un point M de masse m qui glisse sur un plan incliné faisant un angle α avec l’hori-
zontale, d’un point A à un point B séparés d’une altitude h. On prend en compte les frottements
solides de coefficient fd modélisés par la loi de Coulomb : RT = fd × RN , avec −→

RT la composante
tangentielle et −→

RN la composante normale de la réaction du support.

B
α

x

A

y

h

Déterminer le travail du poids et le travail de la réaction du support (normale et tangentielle).

Exercice de cours A⃝
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II.3 Puissance d’une force

D’après la définition du déplacement élémentaire vue au chapitre MECA1 : d−−→
OM =

−−−−−−−−−−→
M(t)M(t + dt) =

−→v dt, on peut écrire le travail élémentaire sous la forme : δW/R(−→f ) = −→
f · −→v dt.

Relation puissance/travail élémentaire : P/R(−→f ) = δW/R(−→f )
dt

Puissance d’une force : La puissance de la force −→
f appliquée au point matériel M de masse

m animé de la vitesse
−−−−−→
v(M/R) dans R vaut :

P/R(−→f ) = −→
f ·

−−−−−→
v(M/R)

P s’exprime en Watt (W).

Définition

Remarques

• La puissance dépend du référentiel d’étude (comme la vitesse et le travail).
• La puissance est une grandeur additive : P(−−−−→

f1 + f2) = P(−→f1) + P(−→f2)
• Comme pour le travail élémentaire, on parle de puissance motrice si P/R(−→f ) > 0, de

puissance résistante si P/R(−→f ) < 0 et de puissance nulle si P/R(−→f ) = 0.

Déterminer la puissance des forces −→
T et −→

P . Étudier leur signe et conclure sur leur caractère résistant
ou moteur.

Retour sur le mouvement du pendule
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III Théorèmes de l’énergie et de la puissance cinétiques
III.1 Énonce des théorèmes

Énergie cinétique : Soit un point matériel M de masse m et de vecteur vitesse
−−−−−→
v(M/R) par

rapport à un référentiel R. Son énergie cinétique dans le référentiel R est :

Ec(M/R) = 1
2mv2

avec v =
∥∥∥∥−−−−−→
v(M/R)

∥∥∥∥ en m·s−1 (norme du vecteur vitesse du point M dans le référentiel R)
L’énergie cinétique s’exprime en Joule (J).

Définition

Remarque

• Ec(M/R) dépend du référentiel R, tout comme
−−−−−→
v(M/R).

Multiplier scalairement le principe fondamental de la dynamique par −→v , puis faire apparaître la
dérivée de l’énergie cinétique du système.

Démonstration
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Théorème de la puissance cinétique appliquée au point M dans le référentiel R galiléen :

dEc

dt
=
∑

P(−→fi )
(

=
∑

i

−→
fi · −→v

)
Théorème de la puissance cinétique

Intégrer par rapport au temps entre l’instant tA où le mobile quitte A avec une vitesse vA et l’instant
tB où le mobile quitte B avec une vitesse vB.

Démonstration

La variation d’énergie cinétique d’un point matériel M entre deux instants est égale au travail
des forces qui s’exercent sur ce point entre les deux instants considérés :

∆Ec =
∑

i

WA→B(−→fi )

avec ∆Ec = Ec(tB) − Ec(tA) = 1
2mv2

B − 1
2mv2

A

Au niveau infinitésimal on peut écrire : dEc =
∑

i

δW (−→fi )

Théorème de l’énergie cinétique

III.2 Utilisation des théorèmes
Les théorèmes de la puissance et de l’énergie cinétiques n’apportent pas d’information supplémentaire
par rapport au PFD : en passant d’une équation vectorielle (PFD) à une équation scalaire (TEC ou
TPC), on perd même de l’information. Mais dans certains cas, la méthode énergétique s’avère judicieuse.

Il est judicieux d’utiliser ces lois énergétiques (TEC, TPC) lorsque :

— on cherche l’équation du mouvement d’un système à un seul degré de liberté (une seule
variable d’espace suffit à la description du mouvement) ;

— les forces non connues (réaction normale du support, tension du fil) ne travaillent pas.

Quelle loi énergétique utiliser : TEC ou TPC ?

— Privilégier le TEC si on cherche un scalaire (par ex : norme du vecteur vitesse, distance)
d’un système à 1 degré de liberté à un instant t1 particulier et que l’on connaît la valeur
de ce scalaire à un autre instant t0.

— Privilégier le TPC si on cherche l’équation du mouvement d’un système à 1 degré
de liberté pour lequel les forces non connues ne travaillent pas.

Méthode
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① Comme pour tout exercice de mécanique : système, référentiel, choix de la base de projection,
bilan des forces, schéma complet.

② Choisir les deux instants tA et tB, adaptés aux données du problème et à la question posée,
entre lesquels appliquer le TEC.

③ Écrire : « On applique le théorème de l’énergie cinétique au système . . . dans le référentiel ........
(galiléen) entre A(tA) et B(tB) » et écrire la relation : ∆A→BEc = Ec(B) − Ec(A) =

∑
WA→B

④ Exprimer le travail des différentes forces sur le trajet AB, pour cela :
• projeter les forces −→

F dans la base de projection choisie (cartésienne ou cylindrique) ;
• exprimer le vecteur déplacement élémentaire d−−→

OM dans la même base de projection
• exprimer le travail élémentaire δW = −→

F · d−−→
OM ;

• calculer l’intégrale du travail élémentaire entre A et B : WA→B =
∫ B

A
δW .

⑤ Exprimer la différence d’énergie cinétique entre A et B : ∆A→BEc = Ec(B) − Ec(A)

⑥ Égaliser la différence d’énergie cinétique et les travaux calculés précédemment.

⑦ Conclure sur ce qui est demandé dans l’énoncé.

Méthode : Comment appliquer le TEC ?

On étudie le lancer d’une pierre de curling assimilée à un point M de masse m = 20 kg glissant
sur une patinoire selon l’axe Ox vers le point B visé (appelé « maison »). La pierre est lancée de
la position initiale A avec une vitesse −→v0 = v0

−→ux, la maison se trouvant à la distance D = AB =
25 m du point A. La force de frottement de la glace sur la pierre est supposée constante pendant
toute la glissade : −→

F = −F0
−→ux avec F0 = 3,0 N, et cette force s’annule lorsque la vitesse de la pierre

s’annule. Les frottements fluides sont négligés. Le lancer étudié est supposé gagnant : la pierre
atteint la maison et s’y arrête.
Déterminer la vitesse initiale v0 adaptée.

Exercice de cours B⃝
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① Comme pour tout exercice de mécanique : système ; référentiel ; bilan des forces ; choix de la
base de projection adaptée (cartésienne, polaire, cylindrique, sphérique) ; schéma complet.

② Écrire : « On applique le théorème de la puissance cinétique au système . . . dans le référentiel
........ (galiléen) » et écrire cette loi : dEc(M/R)

dt
=
∑

Pext

③ Exprimer la puissance des différentes forces, pour cela :
• projeter les forces −→

F dans la base de projection choisie ;
• exprimer le vecteur vitesse dans la base de projection choisie ;
• exprimer le produit scalaire −→

F · −→v = Fxẋ + Fyẏ . . . , ou −→
F · −→v = Frṙ + Fθrθ̇ . . .

④ Exprimer l’énergie cinétique à partir de l’expression du vecteur vitesse dans la base de
projection choisie. Calculer la dérivée de l’énergie cinétique.

⑤ Égaliser la dérivée de l’énergie cinétique calculée précédemment et la somme des puissances
des forces calculées précédemment.

⑥ Conclure sur ce qui est demandé dans l’énoncé.

Méthode : Comment appliquer le TPC ?

On étudie le pendule simple : une masse ponctuelle m est accrochée à l’extrémité d’un fil inextensible
sans masse de longueur ℓ, que l’on fait osciller dans un plan.
Établir l’équation différentielle vérifiée par θ(t), angle que fait le fil avec la verticale descendante.

Retour sur le mouvement du pendule simple
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IV Forces conservatives et énergie potentielle
IV.1 Définition d’une force conservative - lien avec l’énergie potentielle

Force conservative : Une force −→
fC est conservative si son travail WA→B(−→fC) entre deux points

A et B ne dépend pas du chemin suivi mais uniquement des points A et B.

Définition

Deux façons d’exprimer le lien entre force conservative et énergie potentielle :
• Le travail d’une force conservative −→

fC lors d’un déplacement entre A et B est alors égal à
l’opposé de la variation d’une fonction scalaire de la position appelée énergie potentielle :

WAB(−→fC) = −∆ABEp = −
(
Ep(B) − Ep(A)

)
Pour un déplacement élémentaire, le travail élémentaire de la force −→

fC est égale à l’opposé
de la variation infinitésimale de l’énergie potentielle : δW (−→fC) = −dEp

• Une force conservative s’exprime comme le gradient d’une fonction scalaire de la position
appelée énergie potentielle : −→

fC = −
−→
∇(Ep)

où −→
∇ représente l’opérateur gradient : c’est un opérateur différentiel linéaire qui s’applique

à une fonction scalaire de l’espace (champ scalaire) et retourne une fonction vectorielle
de l’espace (champ vectoriel). L’expression de l’opérateur gradient dépend du système de
coordonnées. En coordonnées cartésiennes on retiendra la formule suivante :

−→
∇f(x, y, z) = ∂f

∂x
−→ux + ∂f

∂y
−→uy + ∂f

∂z
−→uz

Propriété

Remarques
• Une force dont le travail entre 2 points dépend du chemin suivi n’est pas conservative.
• Il y a deux méthodes pour déterminer l’énergie potentielle associée à une force conserva-

tive : soit en résolvant −→
fC = −

−→
∇(Ep) (ce qui revient à résoudre des équations différen-

tielles), soit en cherchant une fonction Ep qui vérifie WAB(−→fC) = −∆ABEp.

Méthode 1 pour établir l’expression de la fonction énergie potentielle :

① Calculer le travail de la force −→
fC entre deux points A et B quelconques :

WA→B(−→fC) =
∫

M∈
↷

AB

−→
fC · d−−→

OM

② Écrire cette expression sous la forme de l’opposé de la différence d’une fonction de la position :

−
[
Ep(B) − Ep(A)

]
③ Identifier l’énergie potentielle à une constante additive près.

Méthode
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Remarques
• Il est aussi possible de déterminer le travail élémentaire δW (−→fC) = −→

fC · d−−→
OM et d’écrire

ensuite que son opposé est égal à la différentielle de la fonction énergie potentielle −dEp :
−→
fC · d−−→

OM = −dEp

• Lors de l’application du TEC, plutôt que de calculer le travail des forces conservatives sur
le chemin suivi, il est souvent plus simple de calculer les variations des énergies potentielles
correspondantes entre le départ et l’arrivée.

Méthode 2 pour établir l’expression de la fonction énergie potentielle :

① Écrire la relation vectorielle −→
fC = −

−→
∇(Ep)

② Utiliser l’expression du gradient fournie pour établir le système d’équations différentielles.

Par exemple en coordonnées cartésiennes :


−→
f · −→ux = −∂Ep

∂x−→
f · −→uy = −∂Ep

∂y−→
f · −→uz = −∂Ep

∂z

③ Résoudre les équations différentielles.

Méthode

IV.2 Exemples de forces conservatives

Établir, avec les deux méthodes, l’expression de l’énergie potentielle de pesanteur.
Démonstration
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Établir, avec les deux méthodes, l’expression de l’énergie potentielle gravitationnelle.
Vecteur déplacement élémentaire en coordonnées sphériques : d−−→

OM = dr−→ur + rdθ−→uθ + r sin θdφ−→uφ

Opérateur gradient en sphérique : −→
∇f = ∂f

∂r
−→ur + 1

r
∂f
∂θ

−→uθ + 1
r sin θ

∂f
∂φ

−→uφ

Démonstration
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Établir, avec les deux méthodes, l’expression de l’énergie potentielle élastique.
Démonstration

Énergie potentielle de pesanteur Epp d’un point matériel de masse m, situé à l’altitude z :

Epp = + mgz + cste

lorsque l’axe (Oz) est ascendant

Epp = − mgz + cste

lorsque l’axe (Oz) est descendant

Énergie potentielle gravitationnelle Ep,g d’un système M de masse m soumis à une force
d’interaction gravitationnelle exercée par un astre A de masse mA :

Ep,g = −G
m × mA

r
+ cste

Énergie potentielle élastique Ep,él d’un ressort de longueur ℓ(t), de constante de raideur k,
de longueur à vide ℓ0 :

Ep,él = 1
2k
(
ℓ(t) − ℓ0

)2
+ cste

Formules



MECA3 Page 14 / 21 MPSI1 - 2025/2026

V Théorème de l’énergie mécanique

Énergie mécanique : Soit M un point matériel de masse m, sur lequel s’exercent des forces
extérieures. L’énergie mécanique Em du point M est :

Em(M/R) = Ec(M/R) + Ep(M)

avec :
Ep(M) = énergie potentielle du point M correspond à la somme des énergies poten-
tielles associées à toutes les forces extérieures conservatives.

Ec(M/R) = énergie cinétique du point M dans le référentiel R.

Définition

Utiliser le le théorème de l’énergie cinétique et la définition des forces conservatives pour exprimer
la variation d’énergie mécanique d’un système.

Démonstration

La variation d’énergie mécanique d’un point matériel M entre deux instants est égale au travail
des forces non conservatives qui s’exercent sur ce point entre les deux instants considérés :

∆Em = Em(tB) − Em(tA) =
∑

WA→B(−−→fNC)

Au niveau infinitésimal on peut écrire : dEm = d(Ec + Ep) =
∑

δW (−−→fNC)

Cas de conservation de l’énergie mécanique : L’énergie mécanique d’un point ma-
tériel soumis uniquement à des forces non conservatives ou à des forces conservatives qui ne
travaillent pas est une constante du mouvement.

Théorème de l’énergie mécanique

Théorème de la puissance mécanique appliquée au point M dans le référentiel R galiléen :

dEm

dt
=
∑

P(−−→fNC) =
∑−−→

fNC · −→v

Théorème de la puissance mécanique

Remarque
• Si toutes les forces sont conservatives, on parle de mouvement conservatif (Em = cste).
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VI Mouvements conservatifs à 1 dimension
VI.1 Expression d’une force conservative pour un mouvement à 1 dimension
Un système à 1 dimension (ou 1 degré de liberté) est un système dont le repérage dans l’espace ne
nécessite qu’un seul paramètre : l’abscisse sur un axe, un angle, une distance, etc.

Soit −→
F = Fx(x)−→ux une force conservative qui s’applique sur le système.

Par définition du travail, on peut écrire : δW = −→
F · d−−→

OM = Fx(x)−→ux · d−−→
OM︸ ︷︷ ︸
dx−→ux

= Fx(x)dx.

Or la force −→
F est conservative, donc il existe une énergie potentielle Ep telle que δW = −dEp, ainsi

Fx(x)dx = −dEp c’est à dire :

Fx(x) = −dEp

dx
soit −→

F = −dEp

dx
−→ux

VI.2 Vocabulaire

Position d’équilibre : xe est une position d’équilibre si lorsqu’on place M en cette position
xe sans vitesse initiale il y reste.
En une position d’équilibre, la somme des forces qui s’appliquent à M est nulle : ∑

i

−→
fi = −→0

Équilibre stable : quand on écarte légèrement un point M de sa position d’équilibre, il revient
vers sa position d’équilibre (il apparaît une force qui tend à l’y ramener).

Équilibre instable : quand on écarte légèrement un point M de sa position d’équi-
libre, il s’éloigne définitivement de sa position d’équilibre (il apparaît une force qui tend à l’en
éloigner davantage).

Définitions

VI.3 Analyse du graphe d’énergie potentielle
a) Cas d’un équilibre stable

En une position d’équilibre stable, l’énergie poten-
tielle présente un minimum local.

Cela se traduit par :

(
dEp

dx

)
x=xe

= 0 (la force s’annule) et
(

d2Ep

dx2

)
x=xe

> 0
x

Ep

xe

signe de dEp
dx

sens de −→
F

b) Cas d’un équilibre instable

En une position d’équilibre instable, l’énergie
potentielle présente un maximum local.

Cela se traduit par :(
dEp

dx

)
x=xe

= 0 (la force s’annule) et
(

d2Ep

dx2

)
x=xe

< 0
x

Ep

xe

signe de dEp
dx

sens de −→
F
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Comment relier le sens de −→
F à

(
d2Ep

dx2

)
x=xe

?

Lorsque la fonction Ep est deux fois dérivable et que sa dérivée seconde ne s’annule pas en xe, on peut
exprimer −→

F au voisinage de xe avec un développement limité au 1er ordre de la fonction Fx(x) au
voisinage de x = xe :

Fx(xe + dx) = Fx(xe) + (xe + dx − xe)
(

dFx

dx

)
x=xe

=
(

dFx

dx

)
x=xe

dx

Or Fx(x) = −dEp

dx
donc

(
dFx

dx

)
x=xe

= −
(

d2Ep

dx2

)
x=xe

et Fx(xe + dx) = −
(

d2Ep

dx2

)
x=xe

dx .

Donc pour un déplacement dx > 0, si
(

d2Ep

dx2

)
x=xe

> 0 , alors Fx(xe + dx) < 0 donc la force tend

à ramener le point vers sa position d’équilibre ⇒ position d’équilibre stable.

Et pour un déplacement dx > 0, si
(

d2Ep

dx2

)
x=xe

< 0 , alors Fx(xe + dx) > 0 donc la force tend à éloigner

encore plus le point de sa position d’équilibre ⇒ position d’équilibre instable.

c) Analyse du mouvement à l’aide d’un graphe énergétique
On s’intéresse au mouvement conservatif à un degré de liberté d’un point M . L’énergie mécanique
de M est constante, et sa valeur est fixée par les conditions initiales (position initiale et vitesse
initiale), et l’énergie potentielle est donnée sur le graphe ci-dessous.

x

Ep

xe1
xe2

U1

U2

Signe de dEp

dx

Signe de Fx(x)

Sens de −→
F

Stabilité de
l’équilibre 2

Stabilité de
l’équilibre 1

Em1

Em2

Em3

Em4



MECA3 Page 17 / 21 MPSI1 - 2025/2026

Étude des trajectoires à partir de la courbe Ep(x) :

Donner l’expression de Em en fonction de m, ẋ et Ep(x).
En déduire que les positions x accessibles au point M sont celles pour lesquelles Ep(x) ≤ Em.

Analyse du graphique

À l’aide du graphique, décrire la nature du mouvement du point M selon la valeur de l’énergie
mécanique, en s’intéressant aux cas suivants :

Em1 = U1 ; U1 < Em2 < 0 ; 0 < Em3 < U2 ; Em4 > U2

Utiliser les termes suivants : « trajectoire bornée », « trajectoire non bornée », « mouvement
périodique », « état confiné (ou lié) », « état de diffusion » .
Pour chaque valeur de Em, décrire les positions de vitesse nulle.

Analyse du graphique
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Énergie minimale nécessaire pour franchir la barrière de potentiel :

Quelle énergie mécanique doit avoir le point matériel, placé en x = xe1 pour qu’il puisse s’échapper
à l’infini ?

Analyse du graphique

Quelle vitesse doit avoir le point matériel, placé en x = xe1 pour qu’il puisse s’échapper à l’infini ?
Analyse du graphique
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VI.4 Mouvement au voisinage d’un équilibre stable
Soit xe une position d’équilibre stable d’un système conservatif à 1 degré de liberté, d’énergie potentielle
Ep(x). On a donc : (

dEp

dx

)
x=xe

= 0 et
(

d2Ep

dx2

)
x=xe

> 0

On étudie le mouvement de faible amplitude du point matériel M autour de l’équilibre stable xe de sorte
que pendant tout le mouvement x ≈ xe.

Écrire le développement limité au deuxième ordre de l’énergie potentielle au voisinage de la posi-
tion d’équilibre xe, et montrer que l’énergie potentielle peut s’identifier à une énergie potentielle
élastique.

Démonstration

En déduire l’expression de l’énergie mécanique au voisinage de la position d’équilibre stable xe.
Démonstration

Que peut-on dire de l’énergie mécanique du point M ? En déduire l’équation différentielle régissant
le mouvement de M .

Démonstration
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Mouvements conservatifs au voisinage d’un équilibre stable :

L’équation du mouvement d’un système conservatif à un degré de liberté, au voisinage d’une
position xe d’équilibre stable est celle d’un oscillateur harmonique :

ẍ + ω2
0(x − xe) = 0

de pulsation propre ω0 =
√√√√ 1

m

(
d2Ep

dx2

)
x=xe

Le point M oscille au voisinage de la position d’équilibre stable xe avec une période T0 = 2π

ω0
.

Synthèse

VI.5 Résolution numérique de l’équation du mouvement du pendule simple
On a montré précédemment que le mouvement du point matériel M lié à un fil de longueur ℓ est régi
par l’équation :

θ̈ + ω2
0 sin(θ) = 0

avec θ = angle que fait le fil avec la verticale descendante, et ω0 =
√

g

ℓ
.

Le programme Python ci-dessous permet de comparer la solution de cette équation différentielle ob-
tenue avec une méthode numérique, à la réponse analytique de l’équation linéarisée dans le cas des
petits angles.

La fonction odeint a une syntaxe particulière, qui oblige à transformer l’équation d’ordre 2 sur θ, en une

équation d’ordre 1 sur le couple Y =
(

θ

θ̇

)
.

Y a donc deux composantes : sa première composante est Y0 = θ ; sa seconde composante est Y1 = θ̇.
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Dériver le couple Y pour trouver l’équation différentielle dY

dt
= F (Y ).

Analyse du programme

Quel est la valeur du pas de cette méthode numérique ?
Analyse du programme

Faire varier les conditions initiales. Peut-on dire que la période des oscillations est indépendante de
l’amplitude des oscillations ?

Analyse du programme
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