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MECA2 - TD

Exercices d’application directe du cours

Exercice n°1 Iceberg �

On considère un iceberg dont on peut voir un dessin ci-contre. la ligne
horizontale représente la surface de l’eau. On note V le volume total de
l’iceberg, Vi son volume immergé, ρg = 0,92 × 103 kg·m−3 la masse volu-
mique de la glace et ρℓ = 1,02 × 103 kg·m−3 celle de l’eau salée.
Q1. Établir les expressions de la poussée d’Archimède et de la force de

pesanteur qui s’applique sur l’iceberg.
Q2. Déterminer la proportion volumique de glace immergée.

Q2. 90% du volume de l’iceberg est immergé.

Exercice n°2 Pendule conique �

On considère un pendule simple constitué d’un fil inextensible, de
longueur ℓ, de masse négligeable, fixé en O et auquel on a accroché une
petite bille de masse m assimilable à un point matériel M . Le point O
est fixe dans le référentiel du laboratoire R galiléen.
Un enfant fait tourner le pendule de manière à ce que la masse effectue
un mouvement circulaire uniforme de vitesse angulaire ω dans le plan
xOy. Le fil OM garde une inclinaison constante α par rapport à la
verticale au cours du mouvement.
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Q1. Quel système de coordonnées est-il judicieux d’utiliser ? Faire un schéma du problème pour situer
les différentes notations.

Q2. En appliquant le principe fondamental de la dynamique, déduire une relation entre ω, ℓ, g et α.
Q3. Montrer que la vitesse angulaire est forcément supérieure à une certaine valeur ω0.

Q2. ω2 = g
ℓ cos α

; Q3. ω0 =
√

g
ℓ

Exercice n°3 Mouvement avec une poulie
Deux solides S1 et S2, considérés comme ponctuels, sont reliés entre eux par un fil supposé idéal (= fin,
totalement souple, incassable et inextensible et sans masse), qui passe sur une poulie elle aussi idéale (=
sans frottement ni masse). S1 glisse sans frottement sur un plan incliné et S2 se déplace verticalement.
Déterminer l’accélération des deux solides.

S1

S2

α a = m2−m1 sin α
m1+m2

g
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Exercices ⋆

Exercice n°4 Brique sur un plan incliné �

On considère un plan incliné d’un angle α = 20 ˚ par rapport à l’horizontale. Une brique de masse m
= 600 g est lancée depuis le bas du plan vers le haut avec une vitesse −→v0 de norme 1,5 m·s−1. On utilise,
pour étudier le mouvement, un axe Ox tel que O coïncide avec le départ de la brique.Pour étudier ce
mouvement, on utilise un axe (Ox) parallèle au plan incliné et un axe (Oz) orthogonal dirigé vers le
haut tel que −→v0 = v0

−→ux et tel que O coïncide avec le point de départ de la brique.
On suppose que le contact entre la brique et le plan incliné se fait sans frottements.
Q1. Établir l’équation horaire du mouvement de la brique lors de la montée.
Q2. Déterminer la date à laquelle la brique s’arrête ainsi que la distance qu’elle aura parcourue.

On suppose maintenant qu’il existe des frottements solides. La force de contact a alors la forme suivante−→
R = −→

Rn + −→
Rt avec −→

Rt colinéaire et de sens contraire à la vitesse, et

∥
−→
Rt∥ = µd × ∥

−→
Rn∥

où µd = 0, 20 est le cœfficient de frottement dynamique.
Q3. Établir l’équation du mouvement de la brique lors de la montée.
Q4. En déduire sans calcul la loi horaire x(t), l’instant auquel la brique s’arrête et la distance qu’elle a

parcouru. Une fois que la brique est arrêtée, la force de frottement solide change de nature : en effet,
lorsque la brique ne glisse pas sur le support, les deux forces sont reliées par :

∥
−→
Rt∥ ≤ µs × ∥

−→
Rn∥

où µs ≈ µd = 0, 2 est le cœfficient de frottement statique.
Q5. Quelle est le sens de la force de frottement lorsque la brique est à l’arrêt ?
Q6. À quelle condition sur l’angle α la brique reste-t-elle immobile sans glisser ? Attention, la force de

frottement ayant changé, les équations précédentes ne s’appliquent plus.

Exercice n°5 Glissade sur un igloo �

Un esquimau désœuvré modélisé par un point matériel M se tient sur le sommet de son igloo. À l’instant
t = 0, il se met à glisser, sans vitesse initiale, le long de l’igloo. À partir d’un certain moment, M quitte
la demi-sphère. On distingue ainsi deux phases distinctes dans le mouvement.
L’esquimau glissant sur de la glace, on suppose qu’il n’y a pas de frottements. Le rayon de l’igloo est
noté R, la masse de l’esquimau m.
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Q1. Déterminer l’équation différentielle liant θ̇, θ̈, g et R pendant la première phase du mouvement.

Q2. En multipliant cette équation par θ̇, en déduire que θ̇2 = 2g

R
(1 − cos θ).

Q3. En déduire la force exercée par le support sur le point M en fonction de m, g et θ.
Q4. Déterminer alors la valeur exacte de l’angle θd pour lequel le point M quitte le support. Cet angle

serait-il différent si l’igloo était situé sur la planète Mars ?
Q5. Déterminer dans la base (−→ux, −→uy) en fonction de R et g la vitesse du point M , notée −→vd , lorsque

l’esquimau quitte le support.

Exercices ⋆ ⋆

Exercice n°6 Chaussette dans un sèche-linge
Dans un sèche-linge, le mouvement d’une chaussette s’effectue en deux phases alternées :

— Dans la phase 1 : elle est entraînée avec un mouvement de rotation uniforme
— Dans la phase 2 : elle retombe en chute libre

On observe qu’elle décolle du tambour toujours au même endroit. On cherche à déterminer ce lieu.
Pour les applications numériques, on considère g = 9,8 m·s−2.
On modélise le tambour par un cylindre de rayon R = 25 cm tournant à 50 tours·min−1. On s’intéresse
au mouvement de la chaussette qu’on assimile à un point matériel M de masse m. On étudie la première
phase pendant laquelle le linge est entraîné dans un mouvement de rotation circulaire et uniforme à la
même vitesse que le tambour et en restant collé aux parois du tambour.
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Q1. Déterminer l’accélération de la chaussette.
Q2. En déduire la réaction du tambour sur la chaussette.
Q3. Montrer que la réaction normale s’annule lorsque la chaussette atteint un point dont on déterminera

la position angulaire.
Q4. Que se passe-t-il en ce point ?

Exercice n°7 Basket-ball �

On étudie les tirs de basket-ball de manière simplifiée. On suppose que le joueur est face au panneau à
une distance D de ce dernier. Le cercle du panier est situé à une hauteur H = 3,05 m au-dessus du sol
et on assimilera dans un premier temps le cercle à un point situé sur le panneau. De même, le ballon
sera considéré comme ponctuel. On néglige les frottements fluides de l’air. Le joueur tire d’une hauteur
h = 2,00 m au-dessus du sol en imposant une vitesse initiale −→v0 faisant un angle α avec l’horizontale.
Q1. Établir les équations horaires du mouvement du ballon lors du tir.
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Q2. Déterminer l’équation de la trajectoire du ballon.
Q3. On suppose que le module de la vitesse initiale est fixé. Donner l’équation à vérifier par l’angle α

pour que le panier soit marqué. On la mettra sous la forme d’une équation du second degré en tan α.
Q4. Montrer que cette équation n’admet des solutions que si le module de v0 de la vitesse initiale vérifie

une inéquation du s econd degré en v2
0.

Q5. En déduire l’existence d’une valeur minimale v0 pour que le panier soit marqué.
Q6. Faire l’application numérique pour un lancer franc (la distance D vaut alors 4,60 m), puis pour

un panier à 3 points (la distance D vaut alors 6,25 m selon les règles de la fédération française de
basket-ball).

Q7. Si la condition précédente est vérifiée, donner l’expression de tan α et en déduire qu’il existe deux
angles possibles pour marquer le panier.

Q8. Donner les valeurs numériques des angles α permettant de marquer un lancer franc en supposant
que v0 = 10 m·s−1.

Q9. Dans la suite, on suppose que l’angle de tir est fixé. déterminer l’expression de la vitesse initiale v0
à imposer pour marquer le panier.

Q10. Faire l’application numérique pour un lancer franc et un angle de tir α = 70 ˚.

Exercice n°8 Plongeon
Un baigneur, de masse m = 80 kg saute d’un plongeoir situé à une hauteur h = 10 m au dessus de la
surface de l’eau. On considère qu’il se laisse chuter sans vitesse initiale et qu’il est uniquement soumis à
la force de pesanteur (on prendra g = 9,8 m·s−2 durant la chute. On note (Oz) l’axe vertical descendant,
O, étant le point de saut.
Q1. Déterminer la vitesse ve d’entrée dans l’eau ainsi que le temps de chute tc. Faire l’application numé-

rique.

Lorsqu’il est dans l’eau, le baigneur ne fait aucun mouvement. Il subit, en plus de la pesanteur :

— une force de frottement −→
ff = −k−→v (−→v étant la vitesse et k = 250 kg·s−1

— la poussée d’Archimède −→π = − m

dh

−→g (dh = 0,9 est la densité du corps humain)

Q2. Établir l’équation différentielle à laquelle obéit la vitesse en projection sur (Oz), notée vz. On posera
τ = m

k
.

Q3. Intégrer cette équation en prenant comme nouvelle origine des temps t = tc.
Q4. Déterminer la vitesse limite vL(< 0) en fonction de m, k, g et dh. Faire l’application numérique.
Q5. Exprimer la vitesse vz en fonction de ve, |vL| et t. Déterminer à quel instant t1 le baigneur commence

à remonter.
Q6. En prenant la surface de l’eau comme nouvelle origine de l’axe (Oz), exprimer z(t). En déduire la

profondeur maximale pouvant être atteinte.
Q7. En fait, il suffit que le baigneur arrive au fond de la piscine avec une vitesse de l’ordre de 1 m·s−1

pour qu’il puisse se repousser avec ses pieds sans risque : à quel instant t2 atteint-il cette vitesse et
quelle est la profondeur minimale du bassin ?


