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EL3 : Filtrage linéaire

Les signaux reçus sont souvent la superposition d’un ensemble de signaux :

— les signaux utiles, par ex signal téléphonique + signal infor-
matique en entrée d’une prise ADSL ;

— les signaux parasites appelés « bruits » générés par l’envi-
ronnement ;

et il est souvent nécessaire d’en extraire un parmi tous : c’est le but des filtres.
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À savoir par
✓ Signaux périodiques : définition de la valeur moyenne et de la valeur efficace.
✓ Expression générale de la fonction de transfert harmonique d’un filtre.
✓ Grandeurs représentées sur un diagramme de Bode (amplitude et phase)
✓ Savoir que le carré de la valeur efficace d’un signal périodique est la somme des carrés des valeurs

efficaces de ses harmoniques

À savoir faire
✓ Déterminer par calcul la valeur moyenne et la valeur efficace d’un signal périodique.
✓ Analyser la décomposition fournie d’un signal périodique en une somme de fonctions sinusoïdales.
✓ Utiliser les échelles logarithmiques pour tracer les fonctions de transfert.
✓ Interpréter les zones rectilignes des diagrammes de Bode d’après l’expression de la fonction de trans-

fert.
✓ Choisir un modèle de filtre en fonction du cahier des charges.
✓ Utiliser une fonction de transfert donnée d’ordre 1 ou 2 et ses représentations graphiques pour conduire

l’étude de la réponse d’un système linéaire à une excitation sinusoïdale, à une somme finie d’excitations
sinusoïdales, à un signal périodique.

✓ Expliquer l’intérêt, pour garantir leur fonctionnement lors de mises en cascade, de réaliser des filtres
de tension de faible impédance de sortie et forte impédance d’entrée.



EL3 Page 2 / 26 MPSI1 - 2025/2026

I Signaux périodiques
I.1 Caractéristiques d’un signal périodique

Valeur moyenne d’un signal périodique s(t) de période T : On la note
〈
s(t)

〉
, elle vaut :

〈
s(t)

〉
= 1

T

∫ T

0
s(t)dt

Définition

Remarque
Pour déterminer la valeur moyenne sur une
représentation graphique du signal s(t), on
prend l’aire entre la courbe et l’axe des abs-
cisses sur une période puis on divise par la va-
leur de la période T pour que le résultat soit
homogène.

〈
s(t)

〉
s en V

t en ms
-3 -2 -1 0 1 2 3

0

1

2

Valeur efficace d’un signal périodique s(t) de période T : On la note Seff, elle est définie
par :

Seff =
√〈

s2
〉

=
√

1
T

∫ T

0

(
s(t)

)2
dt

C’est la racine de la valeur moyenne du carré de s.

Définition

Q1. Déterminer la valeur moyenne du signal i(t) = A cos(ωt + φ).
Q2. Déterminer sa valeur efficace.
Q3. En déduire la valeur moyenne et la valeur efficace de u(t) = A0 + A sin(ωt).

Exercice de cours A⃝
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Remarques
• La valeur efficace d’un signal purement sinusoïdal de valeur moyenne nulle est égale à son

amplitude divisée par
√

2.

• La valeur efficace d’un signal triangulaire centré sur 0 d’amplitude Sm vaut : Seff = Sm√
3

• La valeur efficace d’un signal créneau centré sur 0 d’amplitude Sm vaut : Seff = Sm

• La valeur de la tension notée sur les appareils électriques domestiques est donnée en valeur
efficace d’une tension sinusoïdale. En France, on utilise majoritairement une tension Ueff =
230 V ce qui correspond à une amplitude Um = 325 V.

I.2 Mesures au multimètre

Mode Grandeur mesurée Pour u(t) = U0 + Um cos(ωt + φ)

DC Valeur moyenne (composante continue) UDC = U0

AC Valeur efficace de la partie variable du signal UAC = Um√
2

AC + DC Valeur efficace du signal complet UAC+DC =
√

U2
0 + U2

m

2

t

I.3 Développement en série de Fourier

Développement en série de Fourier d’un signal périodique :

Un signal y périodique de période T et de fréquence f peut s’écrire comme la somme de signaux
sinusoïdaux de fréquences multiples de la fréquence f du signal y(t).
Le développement en série de Fourier de y s’écrit :

y(t) = A0 +
∞∑

n=1

(
An cos(2πnft + φn)

)

avec : A0 = composante continue, c’est la moyenne du signal
f = fréquence de y(t), également la fréquence du fondamental f1 (n = 1)

fn = nf = fréquence de l’harmonique de rang n
An = amplitude de l’harmonique d’ordre n
φn = la phase à l’origine des temps de l’harmonique d’ordre n

Propriété



EL3 Page 4 / 26 MPSI1 - 2025/2026

Remarque
La valeur efficace Yeff d’un signal y périodique de période T dont le développement de Fourier
est donné par y(t) = A0 +

∞∑
n=1

yn(t), dont la nième harmonique yn(t) = An cos(ωnt + φn) est

de valeur efficace Yn,eff = An√
2

est telle que :

Y 2
eff = A2

0 +
∞∑

n=1
Y 2

n,eff

Le carré de la valeur efficace d’un signal périodique est la somme des carrés des
valeurs efficaces de ses harmoniques.

I.4 Analyse spectrale
L’analyse spectrale est l’opération qui consiste à déterminer les signaux sinusoïdaux composant un
signal donné. En TP, on verra comment réaliser une telle opération avec l’oscilloscope ou un logiciel de
traitement de données (regressi, latispro).
L’analyse spectrale permet de connaître :

— les fréquences fn des composantes sinusoïdales contenues dans le signal
— l’amplitude An de chaque composante sinusoïdale de fréquence fn

— la phase à l’origine de chaque composante sinusoïdale de fréquence fn

Spectre en amplitude : il représente les amplitudes An en fonction des fréquences fn (ou des
pulsations ωn = 2π ×fn), ce qui permet de voir l’importance relative des différents harmoniques
présents dans le signal.
Le spectre en amplitude se représente sous la forme de barres verticales de hauteur An et
d’abscisse fn.

Définition

Exemple :

t
A

Le développement en série de Fourier pour le signal carré d’amplitude
A est donné par :

s(t) =
∞∑

n=1

4A

(2n − 1)π sin((2n − 1)ωt)

Ce signal ne se décompose donc qu’avec des harmoniques impairs :

f1 d’amplitude A1 = 4A
π

,

f3 d’amplitude A3 = 4A
3π

,

f5 d’amplitude A5 = 4A
5π

,

etc.
fn

An

f1 f3 f5 f7 f9
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g(t) = 2 + 4 cos
(

ωt + π

2

)
g

t (s)
0

0,1 s

1

h(t) = 1 + 3 cos
(

ωt − π

2

)
+ cos(3ωt) + cos

(
5ωt − π

4

)

h

t (s)
0

0,1 s

1

Pour chacun des deux signaux représentés ci-dessus :
Q1. Déterminer la période, en déduire leur fréquence et leur pulsation.
Q2. Déterminer les valeurs des amplitudes An, des phases à l’origine des temps φn et des pulsations

ωn des différents harmoniques.
Q3. Représenter les spectres en amplitude.

Exercice de cours B⃝

I.5 Signaux complexes
L’étude d’un filtre linéaire est menée en régime sinusoïdal, en utilisant la notation complexe :

— À la composante de pulsation ω du signal d’entrée ue(t) = Em cos(ωt + φe), on associe le signal
complexe :

ue(t) = Uemejωt où Uem = Uemejφe

— À la composante de pulsation ω du signal de sortie us(t) = Usm cos(ωt + φs), on associe le signal
complexe :

us(t) = Usmejωt où Usm = Usmejφs
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II Filtrage
II.1 Opération de filtrage

ie(t)

circuit
amont

circuit
aval

is(t)

e(t) s(t)filtre

Un filtre est un quadripôle qui agit sur un signal d’entrée e(t) pour générer un signal de sortie s(t).
us(t) dépend de ue(t), de la nature du filtre et du circuit aval. Pour s’affranchir de l’influence du circuit
aval, on s’intéresse le plus souvent à la situation en sortie ouverte (is = 0).
Un filtre ne transmet que les signaux dont les fréquences appartiennent à une certaine plage appelée à
bande passante (→ II.5). Dans la pratique, les signaux dont la fréquence est en dehors de la bande
passante doivent être suffisamment atténués pour pouvoir être négligés.

En entrée : ue(t) = tension aux bornes de l’association (RC) série
En sortie : us(t) = tension aux bornes du condensateur uC(t)
Ce filtre transmet-il ou bloque-t-il les hautes fréquences (HF) ?
Et les basses fréquences (BF) ?
Ce comportement est-il modifié si on inverse les deux dipôles ?

•

•

C Rue us

• •

•
R

•

Cue us

is = 0

QuadripôleApplication directe : filtre RC série (sortie uC)

Selon les fréquences des signaux transmis par un filtre, on définit :
— un filtre passe-bas : transmet les signaux BF et coupe les signaux HF ;
— un filtre passe-haut : coupe les signaux BF et transmet les signaux HF ;
— un filtre passe-bande : coupe les signaux BF et les signaux HF et transmet des signaux de

fréquence intermédiaire (autour d’une certaine fréquence).
— un filtre coupe-bande (ou réjecteur) : transmet les signaux BF et les signaux HF et coupe

des signaux de fréquence intermédiaire (autour d’une certaine fréquence).

Définitions

Remarque
« Les termes « BF » (basse fréquence) et « HF » (haute fréquence) n’ont de sens que par
comparaison de la fréquence du signal d’entrée avec une fréquence caractéristique du circuit.

II.2 Filtre linéaire

Filtre linéaire : Un filtre est linéaire si le principe de superposition s’applique : si s1(t) est la
réponse du filtre à e1(t) et s2(t) est la réponse du filtre à e2(t) alors : [α.s1(t) + β.s2(t)] est la
réponse du filtre à [α.e1(t) + β.e2(t)].

e1(t) s1(t)filtre

e2(t) s2(t)filtre
e(t) = αe1(t) + βe2(t) s(t) = αs1(t) + βs2(t)filtre

Un filtre linéaire :
— ne contient que des composants linéaires ;
— est un système régi par une équation différentielle linéaire entre le signal d’entrée e(t) (=

signal d’origine) et le signal de sortie s(t) (= signal filtré) ;
— renvoie un signal de sortie de même pulsation ω que le signal sinusoïdal envoyé en entrée.

Définition
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Remarques
• Un filtre ne permettant d’amplifier (au sens de la puissance) aucune composante spectrale

sera appelé filtre passif et à l’inverse, on parlera de filtre actif.
• Un filtre actif amène de l’énergie au système et nécessite donc une alimentation extérieure.

Les filtres étudiés cette année seront obtenus par association de composants passifs (ré-
sistance, bobine, capacité) donc ils seront eux-mêmes passifs.

II.3 Fonction de transfert harmonique

Lorsque le signal d’entrée ue est sinusoïdal de pulsation ω, le signal
de sortie us l’est également et on définit la fonction de transfert
harmonique du quadripôle (à vide : is = 0) par :

H(jω) = us

ue

is = 0

ue usfiltre

avec ue = Uemejωt et us = Usmejωt, donc en simplifiant par ejωt, H peut s’écrire comme la
fonction complexe :

H(jω) = Usm

Uem

= Usm

Uem

ej(φs−φe)

— de module |H(jω)|, appelé gain, noté G, sans dimension : G(ω) = |H(jω)| = Usm

Uem

— d’argument ϕ(ω), appelé phase, noté ϕ, en radians : ϕ(ω) = arg(H(jω)) = φs − φe

c’est le déphasage de la tension de sortie par rapport à la tension d’entrée.

Définition

•

•
R

Cue us

Définir la fonction de transfert H(jω) du filtre RC série avec la sortie prise
aux bornes de uC .
Que peut-on dire du courant traversant les deux dipôles ? En déduire un
outil pratique pour évaluer H(jω), et l’appliquer.

Application directe : filtre RC série (sortie uC)

Ordre d’un filtre : On admet que toute fonction de transfert H peut se mettre sous la forme
d’une fraction irréductible de deux polynômes, N et D, de variable jω :

H(jω) = N(jω)
D(jω)

L’ordre du filtre correspond au degré de D.

Définition

Quel est l’ordre du filtre RC série avec sortie aux bornes de C ?
Application directe : filtre RC série (sortie uC)
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Remarques
• La fonction de transfert peut s’écrire : H(jω) = G(ω)ejϕ(ω).
• On a donc Usmej(ωt+φs) = G(ω) × Uemej(ωt+ϕ(ω)+φe).
• Le filtre transforme donc le signal d’entrée ue(t) = Em cos(ωt + φe) en signal de sortie

us(t) = G(ω)Em cos(ωt + ϕ(ω) + φe)

II.4 Diagramme de Bode

Diagramme de Bode : Le diagramme de Bode d’un filtre est la donnée de deux diagrammes :
— le diagramme en gain : on représente le gain en décibels GdB de la fonction de transfert

en fonction de la pulsation ω (ou de la fréquence f), défini par :

GdB = 20 log(|H|)

— le diagramme en phase : on représente l’argument de la fonction de transfert ϕ en fonction
de la pulsation ω (ou de la fréquence f), défini par :

ϕ = arg(H)

Pour ces deux diagrammes l’axe des abscisses (ω ou f) est en en échelle logarithmique.

Définition

100 101 102 103 104 105 106
−60

−40

−20

0

ω (rad/s)

G
ai

n
en

dé
ci

be
ls

G
dB

(d
B)

100 101 102 103 104 105 106
−100

−80

−60

−40

−20

0

ω (rad/s)

D
ép

ha
sa

ge
ϕ

(˚
)

Justifier la nature passe-bas de ce filtre avec le diagramme de Bode.
Qualifier le déphasage de us par rapport à ue à basse et à haute fréquence.

Application directe : Diagrammes de Bode du filtre RC série (sortie uC)

Dans les diagrammes de Bode, en abscisse, la pulsation est représentée à l’aide d’une échelle
logarithmique : la pulsation est multipliée par 10 en passant d’une graduation à une autre.
On utilise l’échelle logarithmique, car on peut représenter des variations de ω bien plus impor-
tantes qu’en échelle linéaire (un changement d’un ordre de grandeur en ω correspond seulement
à un changement d’une unité en log(ω)).

ω en échelle linéaire
10−2

10−1

1 101 102

ω en échelle log

log(ω)

10−2

−2

10−1

−1

1

0

101

1

102

2

Méthode : échelle logarithmique
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Décade : Chaque intervalle de pulsation
[
10n, 10n+1

]
est appelé décade.

Définition

Remarques
• Chaque décade occupe la même « place » en échelle logarithmique. Sur une échelle loga-

rithmique, il y a la même précision entre 10 et 100 Hz qu’entre 104 et 105 Hz.
• On peut aussi tracer le diagramme de Bode en utilisant une abscisse adimensionnée ω

ωréf
,

où ωréf est une pulsation de référence.

Si sur l’échelle logarithmique ci-dessous, 1 × 10−1 Hz est la fréquence minimale lue, placer les fré-
quences suivantes : 2 × 10−1 Hz ; 50 Hz ; 8 Hz ; 200 Hz ; 1,2 Hz.

Application directe

II.5 Bande passante

Bande passante : La bande passante à − 3dB est l’intervalle de pulsations tel que :

G(ω) >
Gmax√

2
⇔ GdB(ω) > GdB,max − 3dB

car 20 log(
√

2) ≈ 3dB

On définit la (ou les) pulsation(s) de coupure notée ωc par la relation :

G(ωc) = Gmax√
2

⇔ GdB(ωc) = GdB,max − 3dB

Définition

Déterminer grâce au diagramme de Bode fourni précédemment la bande passante du filtre RC série
avec sortie aux bornes de C.

Application directe : Diagrammes de Bode du filtre RC série (sortie uC)
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III Étude de différents filtres
III.1 Méthode pour l’étude des filtres

Étude à basse fréquence :
① Représenter le circuit en remplaçant les condensateurs par des interrupteurs ouverts et les

bobines par des fils.
② En déduire les intensités qui sont nulles (celles qui traversent les branches contenant un

interrupteur ouvert) et les tensions qui sont nulles (celles aux bornes d’un fil).
③ Exprimer us en fonction de ue et de résistances éventuelles présentes dans le circuit. Pour

cela, un pont diviseur de tension ou de courant suffit en général.

Étude à haute fréquence :
Reprendre les mêmes étapes qu’à basse fréquence (avec les équivalences HF cette fois :
condensateurs ↔ fils et bobines ↔ interrupteurs ouverts)

Conclusion :
— Si us = f(ue) ̸= 0 à BF et us = 0 à HF : c’est un filtre passe-bas
— Si us = 0 à BF et us = f(ue) ̸= 0 à HF : c’est un filtre passe-haut
— Si us = 0 à BF et us = 0 à HF : c’est un filtre passe-bande

Méthode : Déterminer la nature d’un filtre sans calcul

Quand le filtre est à vide (is = 0), on établit la fonction de transfert H(jω) = us

ue

en faisant un

pont diviseur de tension.

Méthode : Établir la fonction de transfert

Remarques
• Il est parfois nécessaire de procéder à des associations d’impédances au préalable.
• Après avoir déterminé la fonction de transfert, on l’identifie souvent à la forme canonique

d’un type de filtre (pour alléger/simplifier les calculs). Voici ces formes canoniques (elles
seront fournies) avec x = ω

ωref
(pulsation réduite) et H0 = gain en statique.

— Passe-bas du 1er ordre : H(jx) = H0

1 + jx

— Passe-haut du 1er ordre : H(jx) = H0 jx

1 + jx

— Passe-bas du 2e ordre : H(jx) = H0

1 − x2 + j x
Q

— Passe-haut du 2e ordre : H(jx) = −x2H0

1 − x2 + j x
Q

— Passe-bande du 2e ordre : H(jx) = H0

1 + jQ(x − 1
x
)

— Réjecteur de bande du 2e ordre : H(jx) = H0(1 − x2)
1 − x2 + j x

Q
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① Utiliser l’expression du gain (et non du gain en décibels) ;
② Déterminer l’expression du gain maximal Gmax ( pas en décibels) ;
③ Résoudre l’équation en ωc : G(ωc) = Gmax√

2
.

Méthode : Déterminer la bande passante par le calcul

III.2 Filtre passe-bas du 1er ordre
Exemple : On étudie le quadripôle constitué d’une résistance R
et d’un condensateur de capacité C, alimenté par une tension si-
nusoïdale ue(t) = Uem cos(ωt).
On le considère en sortie ouverte (is = 0), ce qui est le cas lors-
qu’on branche un oscilloscope en sortie dont la résistance d’entrée
Re = 1 MW ≫ R ,

1
Cω

. • •

•
R

•

Cue us

is = 0

Quadripôle

a) Étude qualitative

Vérifier sans calcul que le quadripôle représenté ci-avant est un filtre passe-bas.
Application directe

b) Fonction de transfert

À l’aide de la relation du pont diviseur de tension, déterminer le lien entre us et ue, et en déduire
l’expression de la fonction de transfert.

Application directe
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La mettre sous la forme H(jω) = H0

1 + j
ω

ωc

et identifier les expressions de H0 et ωc (et ωc = ωref de

la forme canonique).

Application directe

Donner l’ordre du filtre, et déterminer sa nature en étudiant le comportement aux limites de la
fonction de transfert.

Application directe

c) Gain et bande passante

Exprimer le gain G(ω) à partir de la fonction de transfert.
Application directe

Quelle est la valeur maximale du gain ?
Application directe

Après avoir rappelé la définition de la pulsation de coupure, établir son expression.
Application directe
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En déduire l’expression de la largeur de la bande passante.
Application directe

d) Diagramme de Bode
Le diagramme de Bode associé à la fonction de transfert d’un filtre passe-bas du 1er ordre H(jω) =

1
1 + j

ω

ωc

est représenté ci-dessous :

100 101 102 103 104 105 106
−60

−40
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(˚
)

Déterminer graphiquement les caractéristiques des asymptotes.
Application directe

Déterminer l’approximation de la fonction de transfert à basse fréquence et en déduire les équations
des asymptotes à basse fréquence. Comparer au diagramme de Bode fourni.

Application directe
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Déterminer l’approximation de la fonction de transfert à haute fréquence et en déduire les équations
des asymptotes à haute fréquence. Comparer au diagramme de Bode fourni.

Application directe

Déterminer graphiquement la bande passante.
Application directe

e) Comportements intégrateur à haute fréquence
En utilisant son approximation à haute fréquence (quand ω ≫ ωc, c’est à dire dans la zone de l’asymptote
-20 dB/dec ) us

ue

≈ H0
ωc

jω
, le signal de sortie peut s’exprimer en fonction du signal d’entrée par :

us(t) = H0ωc ×
∫

ue(t)dt

Un filtre passe-bas du premier ordre alimenté par un signal de fréquence très grande devant la fréquence
de coupure réalise donc une intégration du signal d’entrée.

Exemple : Quand on alimente un filtre passe-bas de fréquence de coupure 10 Hz avec un signal créneau
de fréquence 1 kHz, on observe une intégration du signal en sortie :

t

ue

us

III.3 Filtre passe-haut du 1er ordre

Exemple : On étudie le quadripôle ci-contre alimenté par une tension
sinusoïdale ue(t) = Uem cos(ωt). On le considère en sortie ouverte.

•

•
2R

L Rue us
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a) Étude qualitative du filtre

Par une étude qualitative du circuit, à basse et haute fréquences, déterminer la nature du filtre.
Application directe

b) Fonction de transfert

Établir la fonction de transfert H(jω) de ce filtre.
Application directe

La mettre sous la forme H(jω) =

1
3 × j

ω

ωc

1 + j
ω

ωc

et identifier les expressions de H0 et ωc.

Application directe



EL3 Page 16 / 26 MPSI1 - 2025/2026

Donner l’ordre du filtre, et en identifiant le comportement aux limites de la fonction de transfert,
identifier sa nature.

Application directe

c) Diagramme de Bode
Le diagramme de Bode du filtre précédent est représenté ci-dessous :

101 102 103 104 105 106
−50

−40

−30

−20

−10

f (Hz)

G
ai

n
en

dé
ci

be
ls

G
dB

(d
B)

100 101 102 103 104 105 106
0

20

40

60

80

f (Hz)

D
ép

ha
sa

ge
φ

(˚
)

Déterminer graphiquement les caractéristiques des asymptotes.
Application directe

Déterminer l’approximation de la fonction de transfert à basse fréquence et en déduire les équations
des asymptotes à basse fréquence. Comparer au diagramme de Bode fourni.

Application directe
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Déterminer l’approximation de la fonction de transfert à haute fréquence et en déduire les équations
des asymptotes à haute fréquence. Comparer au diagramme de Bode fourni.

Application directe

Déterminer la bande passante.
Application directe

d) Comportement dérivateur à basse fréquence
En utilisant son approximation à basse fréquence (quand ω ≪ ωc, c’est à dire dans la zone de l’asymptote
+20 dB/dec ) us

ue

≈ H0 × j
ω

ω0
, le signal de sortie peut s’exprimer en fonction du signal d’entrée par :

us(t) = H0

ω0
× due(t)

dt

Un filtre passe-haut du premier ordre alimenté par un signal de fréquence très faible devant la fréquence
de coupure réalise donc une dérivation du signal d’entrée.

III.4 Filtre passe-bas d’ordre 2

La forme canonique pour ce type de filtre est : H(jx) = H0

1 − x2 + j x
Q

, avec x la pulsation réduite ω

ωref
et H0 le gain statique.

Remarque
On reconnaît le résultat de l’étude de la résonance
en charge dans un circuit RLC en RSF (uC aux
bornes de C).

•

•
R L

Cue us
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a) Étude qualitative

Par une étude qualitative du circuit, à basse et haute fréquences, déterminer la nature du filtre.
Application directe

b) Fonction de transfert

Établir la fonction de transfert du filtre H(jω).
Application directe

La mettre sous la forme H(jx) = H0

1 −
(

ω

ω0

)2
+ j

ω

ω0Q

et identifier les expressions de H0, Q et ω0.

Application directe

c) Diagramme de Bode

Exprimer le gain G(ω) à partir de la fonction de transfert, puis le gain en décibels GdB.
Application directe

Déterminer les équations des asymptotes BF et HF pour le diagramme en gain, ainsi que la pulsation
à laquelle elles se coupent. Ces résultats dépendent-ils du facteur de qualité ?

Application directe
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Montrer qualitativement que la bande passante peut être de la forme [ω1; ω2] ou [0; ω1] en fonction
de la valeur de Q.

Application directe

Déterminer les équations des asymptotes BF et HF pour le diagramme en phase, ainsi que la phase
pour ω = ω0. Ces résultats dépendent-ils du facteur de qualité ?

Application directe

Tracer les diagrammes de Bode asymptotiques en gain et en phase, avec la pulsation réduite x = ω
ω0

en abscisse (échelle log) et un gain en statique égal (H0) à 1, pour 3 valeurs de Q : 0,5 ;
√

2 ; 4.

Application directe
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III.5 Filtre passe-bande d’ordre 2
Exemple : On étudie la tension aux bornes de la résistance dans le circuit
RLC série alimenté par une tension sinusoïdale ue(t) = Uem cos(ωt) en
sortie ouverte.

C
L

Rue us

a) Étude qualitative

Par une étude qualitative du circuit, à basse et haute fréquences, déterminer la nature du filtre.
Application directe

b) Fonction de transfert

Établir la fonction de transfert H(jω) du filtre.
Application directe

La mettre sous la forme H(jω) = H0

1 + jQ
(

ω

ω0
− ω0

ω

) et identifier les expressions de H0, Q et ω0.

Application directe

c) Gain et bande passante

Exprimer le gain G(ω) à partir de la fonction de transfert.
Application directe

Quelle est la valeur maximale du gain ? Pour quelle pulsation ?
Application directe
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Poser le calcul permettant de déterminer les expressions des pulsations de coupure, et montrer que
l’écart entre elles vérifie ∆ω = ω0

Q
.

Application directe

Largeur de la bande passante du filtre passe-bande d’ordre 2 : ∆ω = ω0

Q

avec : ω0 = pulsation propre et Q = facteur de qualité, tels que : H(jω) = H0

1 + jQ
(

ω

ω0
− ω0

ω

)

Propriété

d) Diagramme de Bode
Le diagramme de Bode du filtre précédent est donné ci-dessous pour différentes valeurs de Q :
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Diagramme de Bode en gain 
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Déterminer graphiquement les caractéristiques des asymptotes. Dépendent-elles de Q ?
Application directe

Vérifier que ces résultats sont cohérents avec la fonction de transfert établie précédemment.
Application directe

Déterminer graphiquement la bande passante du filtre pour Q = 0, 1. Vérifier la cohérence avec la
formule ∆ω = ω0

Q
.

Application directe

Dans quels cas peut-on considérer qu’il est sélectif ?
Application directe
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Ordre du filtre Pentes possibles des asymptotes Résonance possible

horizontale

1 +20dB décade non

−20dB décade

2
+40dB décade

oui
−40dB décade

Résumé

IV Choix et utilisation de filtres
IV.1 Gabarit d’un filtre

Gabarit d’un filtre : c’est le diagramme de Bode du filtre sur lequel apparaissent les zones de
pulsations à laisser passer ou à atténuer (grisées). Le tracé du gain doit éviter les zones grisées.

a) Filtre passe-bas b) Filtre passe-haut c) Filtre passe-bande d) Filtre coupe-bande

Définition

IV.2 Utilisation en dérivateur, intégrateur, moyenneur

Comportement dérivateur : Si un filtre possède dans une certaine gamme fréquence de
son diagramme de Bode, une asymptote de pente +20 dB/déc, alors il aura un comportement
dérivateur sur cette gamme de fréquence.
Comportement intégrateur : Si un filtre possède dans une certaine gamme fréquence de
son diagramme de Bode, une asymptote de pente -20 dB/déc, alors il aura un comportement
intégrateur sur cette gamme de fréquence.
Comportement moyenneur : Un filtre passe-bas de fréquence de coupure très petite devant
la fréquence du signal d’entrée aura un effet moyenneur.

Propriétés

IV.3 Réponse d’un filtre à une excitation
a) Réponse d’un filtre à un signal sinusoïdal

Réponse d’un filtre à un signal sinusoïdal : Si le signal d’entrée est sinusoïdal de pulsation
ω1 s’écrivant ue(t) = Uem cos(ω1t+φe), alors le signal de sortie sera un signal sinusoïdal de même
pulsation ω1, s’écrivant us(t) = Usm cos(ω1t+φs), dont on peut en déterminer les caractéristiques,
grâce à la connaissance de la fonction de transfert et/ou du diagramme de Bode :

• Amplitude du signal de sortie : Usm = G(ω1) × Uem =
∣∣∣H(jω1)

∣∣∣ × Uem = 10
GdB(ω1)

20 × Uem

• Phase à l’origine du signal de sortie : φs = φe + arg(H(jω1))

Méthode
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b) Réponse d’un filtre à une somme de signaux

Pour déterminer la réponse à une somme finie de signaux sinusoïdaux ou à un signal
périodique :
① Décomposer le signal d’entrée : ue(t) =

∑
n

uen(t) =
∑

n

Uen cos
(
ωnt + φe,n

)
② Déterminer la réponse usn correspondant à chacune des composantes uen grâce à la fonction

de transfert harmonique du filtre (ou à son diagramme de Bode) :
usn(t) = Usn cos(ωnt + φs,n), avec Usn =

∣∣∣H(jωn)
∣∣∣ × Uen et φs,n = φe,n + arg

(
H(jωn)

)
③ Superposer les termes obtenus : us(t) =

∑
n

usn(t)

Méthode

Exemple : On envoie sur un filtre passe-bas d’ordre 1 (H(jω) = 1
1+j ω

ωc

) un signal créneau de fréquence
2πω, et on teste l’effet de la modification de la pulsation de coupure ωc du filtre sur le signal récupéré
en sortie :

Pour ωc = 10ω :

Pour ωc = ω :

Pour ωc = 0, 1ω :
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Pour ωc = 0, 01ω :

IV.4 Filtres en cascade
a) Présence d’une charge en sortie du filtre

Étudions l’effet de la présence d’une charge en sortie (moteur, appareil
électronique, etc.) modélisable par une résistance Re branchée aux bornes
de la capacité.

ue

R

ReC us

La diminution de la résistance de charge abaisse le
gain à basse fréquence (dans la bande passante) et
augmente la fréquence de coupure. Le filtre est donc
modifié par la présence d’une charge en sortie. Cela
est dû au fait qu’une partie du courant traverse la
charge.
À basse fréquence, le condensateur est équivalent à
un interrupteur ouvert, et le filtre est alors consti-
tué de deux résistances en série. La relation du pont
diviseur de tension donne, alors us = Re

R + Re

ue.
Ainsi, lorsque Re ≫ R, son effet sera négligeable
sur le fonctionnement du filtre à basse fréquence.

Courbe du gain en fonction de la fréquence pour
différentes résistances Re

b) Impédances d’entrée et de sortie
L’action d’un filtre linéaire sur le reste du circuit peut être modélisée par :

sortieentrée

filtre

Zeue

ie

Zs

es = H0 × ue

us

is

— Vu depuis l’entrée, le filtre se comporte comme une impédance Ze, appelée impédance d’entrée
du filtre, définie par Ze = ue

ie

.
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— En sortie, l’action du filtre sur ce qui se situe après est modélisée par un générateur réel de fem
es = H0 × ue et d’impédance Zs, appelée impédance de sortie du filtre.

Lorsque le filtre est à vide (rien n’est branché en sortie, donc is = 0), alors us = es = H0 × ue, avec H0
la fonction de transfert du filtre non chargé.
Lorsque le filtre est chargé (quelque chose est branchée en sortie, donc is ̸= 0), us = es − Zs × is, donc
us = H0 × ue − Zsis ̸= H0 × ue.
Ainsi la fonction de transfert du filtre chargé H = us

ue

̸= H0 : la fonction de transfert du filtre chargé est

modifiée par la charge, donc le fonctionnement fréquentiel du filtre est modifié par la charge.

c) Mise en cascade de deux filtres

sortie 1entrée 1

filtre 1

Ze1ue1

ie

Zs1

es1 = H01 × ue1

us1

sortie 2entrée 2

filtre 2

Ze2ue2

Zs2

es2 = H02 × ue2

us2

is = 0

H01 et H02 sont les fonctions de transfert à vide des deux filtres (= lorsqu’ils ne sont pas chargés).

Le filtre 1 est chargé par la présence du filtre 2 donc us1

ue1
̸= H01 (à vide).

Fonction de transfert de l’ensemble des deux filtres : H = us2

ue1
= us2

ue2︸︷︷︸
=H02

×
ue2

ue1︸︷︷︸
̸=H01

Le filtre 2 n’est pas chargé, donc us2 = es2 = H2 × ue2

Pour relier ue2 à ue1, on réalise un pont diviseur de tension : ue2 = Ze2

Ze2 + Zs1
× es1︸︷︷︸

=H01×ue1

Ainsi ue2 = Ze2

Ze2 + Zs1
× H01 × ue1, donc ue2

ue1
= Ze2

Ze2 + Zs1
× H01

La fonction de transfert de l’ensemble est donc : H = H02×
Ze2

Ze2 + Zs1
×H01 ≈ H02×H01 si Ze2

Ze2 + Zs1
≈ 1

ce qui est vrai pour |Ze2| ≫ |Zs1|

Mise en cascade de filtres :
— La présence d’un filtre en aval peut charger le filtre en amont, et modifier sa fonction de

transfert, et donc son comportement fréquentiel.
— La fonction de transfert d’un filtre n’est pas modifiée lors de sa mise en cascade s’il présente

une impédance d’entrée très grande, voire infinie, et une impédance de sortie très faible,
voire nulle.

— La fonction de transfert d’une mise en cascade de filtres d’impédances d’entrée très grandes,
voire infinies, et d’impédances de sortie très faibles, voire nulles, est le produit des fonctions
de transfert de chaque filtre.

Propriétés
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