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Devoir surveillé no 5

Durée : 3 heures

Préambule : Exemple d’un extrait de RAPPORT de concours récent

« Enfin, comme l’an passé, le jury insiste avec force sur la forme : près de la moitié des copies s’est
vue attribuer un malus, ce qui est déraisonnable. Pourtant, à la lumière des six critères évalués lisibi-
lité de l’écriture / respect de la langue / clarté de l’expression / propreté de la copie / identification
des questions / mise en évidence des résultats, force est de constater que bon nombre de candidats ne
remplissent pas les conditions pour ne pas voir des points s’envoler. Pire, ils sont nombreux ceux qui ne
parviennent pas à suivre leur propre raisonnement faute de clarté. »
Rapport du jury du concours Centrale-Supélec 2024

Plan :

Ce problème se compose de 3 exercices indépendants :
— L’exercice 1 porte sur divers aspects du fonctionnement d’une guitare électrique.
— L’exercice 2 s’intéresse au mouvement d’une bille dans un jouet.
— L’exercice 3 propose l’étude d’un pont piéton (le Millennium Bridge à Londres).
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Exercice 1 : Guitare électrique (∼ 45%)

Exercice adapté des épreuves de physique Centrale-Supélec MPI 2024 et Banque PT 2013.

L’objet de ce problème concerne quelques aspects du fonctionnement d’une guitare électrique. La pre-
mière partie est consacrée à l’analyse du son produit par la vibration d’une corde de guitare. Dans la
seconde partie, on s’intéresse au fonctionnement des microphones. Enfin, la troisième partie, présente
le fonctionnement d’un accordeur. Les trois parties sont indépendantes et peuvent être traitées dans un
ordre quelconque.

Données pour l’exercice 1

Caractéristiques de la corde de guitare étudiée :
— longueur : ℓ = 60 cm
— masse linéique : µ = 6,0 g·m−1

— tension : T0 = 120 N

Partie I. Son produit par une corde de guitare

On assimile la corde de guitare à une corde inextensible, de longueur ℓ, sans raideur, de masse linéique
constante µ, tendue par une tension de module T0. Au repos, elle se confond avec l’axe Ox. (Figure 1).

La célérité des ondes se propageant sur une telle corde vaut c =
√

T0

µ
.

x

y

O ℓ
• •

Figure 1 – Modélisation d’une corde de guitare de longueur ℓ attachée en x = 0 et x = ℓ

Q1. Les conditions aux limites (corde fixée en x = 0 et x = ℓ) imposent une quantification des pulsations
temporelles des ondes qui peuvent exister sur la corde : ωn = nω0 , avec ω0 = π c

ℓ
, et on admet que

pour une corde vibrante, l’expression générale de y(x, t) est de la forme :

y(x, t) =
+∞∑
n=1

yn(x, t) avec yn(x, t) = [an cos(nω0t) + bn sin(nω0t)] sin
(

nπx

ℓ

)

Les coefficients an et bn, qui correspondent à l’harmonique d’ordre n, dépendent des conditions
initiales (forme initiale de la corde, vitesse initiale des différents points). Pour une corde pincée,
comme c’est le cas ici pour une guitare :

bn = 0 ∀ n ; an = 0 pour n pair ; an = A

n3 pour n impair avec A = constante

(a) Quelles sont les fréquences présentes dans la vibration (et donc aussi dans le son produit lorsque
cette corde de guitare vibre) ?

(b) Quelle est la valeur de la fréquence de l’harmonique qui contribue le plus au son produit ?
(c) Tracer le spectre du son produit par le pincement de cette corde.
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Partie II. Étude d’un microphone

Une guitare électrique se distingue d’une guitare classique par l’absence de caisse de résonance. Comme
la vibration des cordes métalliques est très inefficacement transformée en onde acoustique, celle-ci est
directement convertie en un signal électrique grâce à un transducteur électromagnétique placé sous les
cordes : le microphone. Un microphone de guitare est composé d’un aimant, entouré d’un bobinage de
fils de cuivre.

D’un point de vue électrique, on peut modéliser le fonctionnement du microphone par le montage de la
figure 2 ci-dessous :

•

•
R L

Cecorde(t) s(t)

Figure 2 – Modélisation d’un microphone de guitare électrique

ecorde(t) est la force électromotrice induite par le mouvement de la corde. L désigne l’inductance
propre du bobinage et R sa résistance. De plus, le grand nombre de spires présentes dans le bobinage
provoque un effet capacitif représenté par le condensateur C.

Q2. Étudier le comportement asymptotique du circuit modélisant le micro représenté sur la figure 2. En
déduire le type de filtrage réalisé par le micro.

Q3. Donner l’expression de la fonction de transfert du micro en régime sinusoïdal forcé H(jω).

Q4. Écrire la fonction de transfert sous la forme H(jω) = H0

1 − ω2

ω2
0

+ j ω
Qω0

et exprimer les paramètres H0

(appelé gain statique), ω0 et Q en fonction de R, L et C.

Q5. Montrer que, si Q > 1√
2 , il y a résonance à une pulsation ωr à déterminer.

Q6. Sur l’annexe à rendre avec la copie, tracer l’allure du diagramme de Bode en amplitude dans
le cas Q = 10, en prenant la pulsation réduite x = ω

ω0
en abscisses.

Q7. Un potentiomètre (conducteur ohmique de résistance réglable) de résistance r est traditionnellement
ajouté en parallèle de la capacité C. Donner l’expression littérale du nouveau gain statique du circuit
en présence de ce potentiomètre. Ce dernier est accessible pour le guitariste. Quelle est son utilité ?
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On souhaite mesurer les paramètres R, L et C de deux micros différents : le micro Fender Lace Sensor
et le micro De Armond Dynasonic. En l’absence de vibration de la corde, ecorde(t) = 0, le micro est
modélisé par le dipôle, d’impédance Z, représenté à la figure 3 gauche.

R L

C e

r Z

U r UZ

Figure 3 – Modélisation d’un microphone de guitare électrique

On réalise le montage de la figure 3 à droite, dans lequel e est une source de tension idéale, délivrant une
tension sinusoïdale de la forme : e(t) = E cos ωt. r est un conducteur ohmique de résistance r = 10 kW.
Q8. Exprimer Z, l’impédance du micro orienté en convention récepteur, en fonction de R, L, C et ω.

Q9. Montrer que Z = r
UZ

U r

.

Q10. Le graphe de la figure 4 représente
∣∣∣∣∣UZ

U r

∣∣∣∣∣ en fonction de la fréquence f pour les deux micros étudiés :

trait plein pour le le micro Fender et pointillés pour micro Dynasonic.
Montrer qu’en basses fréquences Z = R et en déduire la valeur de R pour chaque micro.

Figure 4 –
∣∣∣∣∣UZ

U r

∣∣∣∣∣ en fonction de la fréquence f pour deux micros différents

Q11. Les relevés expérimentaux mettent en évidence que pour des fréquences de l’ordre de 1 kHz, Z est

dominée par R et L. Montrer que pour ces fréquences L ≈ 1
ω

√√√√∣∣∣∣∣rUZ

UR

∣∣∣∣∣
2

− R2.

En déduire la valeur de L pour chaque micro.

Q12. Z peut s’écrire sous la forme Z = R
1 + jQ ω

ω0

1 − ω2

ω2
0

+ j ω
Qω0

. Simplifier l’expression de Z dans l’hypothèse

Q ≫ 1 et ω proche de ω0. Expliquer comment évaluer C à partir des relevés expérimentaux. En
déduire la valeur de C pour chaque micro.
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Partie III. Étude d’un accordeur de guitare

Avant de jouer un morceau, tout bon guitariste doit vérifier qu’elle est bien accordée. En effet, sous
l’effet de plusieurs facteurs (température, hygrométrie, chocs, etc.), la tension des cordes peut varier, ce
qui modifie les fréquences des notes qu’elles produisent.
La figure 1 montre un exemple de signal électrique à la sortie du microphone enregistrant le son issu de
la corde de Mi aigu d’une guitare.

Figure 5 – Enregistrement du son de la corde Mi aigu.

Q13. Analyse du signal électrique généré par le microphone :
(a) Donner une valeur approchée de la valeur moyenne du signal représenté sur la figure 5.
(b) Donner une estimation de la valeur de la fréquence de ce signal (on supposera pour cela le

signal périodique).
(c) L’analyse spectrale de ce signal fera-t-elle apparaitre des harmoniques ? Justifier.

Avant toute chose, le signal est envoyé dans un filtre dont on donne le diagramme de Bode :

Figure 6 – Diagramme de Bode du filtre.

Q14. D’après le diagramme de Bode fourni :
(a) Indiquer de quel type de filtre il s’agit.

(b) Identifier la fréquence caractéristique fc du filtre, pour laquelle le déphasage vaut π

2 .
(c) Déterminer les valeurs des pentes des asymptotes du diagramme en gain.
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Q15. On envoie en entrée le signal suivant :

e(t) = E0 + E0 cos (ωt) + E0 cos
(

10ωt + π

2

)
+ E0 cos

(
100ωt − π

3

)
avec f = 2 Hz et E0 = 1 V.
Déterminer l’expression du signal u(t) de sortie du filtre.

Q16. On donne ci-dessous le schéma d’un filtre :

C

R Le(t) s(t)

Justifier qualitativement que le filtre dont le montage est représenté ci-dessus peut avoir le dia-
gramme de Bode de la figure 6.

Q17. La fonction de transfert de ce filtre est de la forme H(x) = Kx2

1 − x2 + jx
Q

avec x = ω
ω0

.

(a) Établir les expressions de K, Q et ω0.
(b) Déterminer les équations des asymptotes de la courbe de phase.
(c) Déterminer la pente de l’asymptote du gain en décibels à basse fréquence.
(d) Retrouver la valeur du facteur de qualité à partir du diagramme de Bode de la figure 6 (qui est

celui du filtre étudié ici).

Une fois ce premier traitement effectué, le signal passe dans un filtre très sélectif, non étudié dans cet
exercice : si le signal d’entrée est à la fréquence de la note voulue ± 10 Hz, une lampe s’allume (signe
que la note tenue est la bonne), sinon elle s’éteint.
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Exercice 2 : Étude du mouvement d’un jouet avec une bille (∼ 35%)

On étudie dans ce problème le mouvement de la bille d’un jouet, modélisée par un point matériel noté
M de masse m glissant sur un support dans le champ de pesanteur terrestre. Le mouvement s’effectuera
dans un plan vertical.

Données pour l’exercice 2

Caractéristiques du jouet :
— Rayon du cylindre : R = 30 cm
— Masse de la bille : m = 20 g
— Intensité de la pesanteur : g = 9,8 m·s−2

Partie I. Mouvement circulaire sans frottement entre A et S

Le jouet aborde au point A un support demi-cylindrique de rayon noté R avec un vecteur vitesse −→v0

horizontal. Dans cette partie, on néglige tout frottement entre le support et le jouet. On note −→
RN la

réaction normale du support.
On nomme O le centre du cercle et on note θ l’angle entre la verticale descendante passant par O et le
vecteur −−→

OM .

z

R

•Mθ

•
A

z = 0

•O

•S

−→v0

Figure 1 – Notation et repérage pour la portion circulaire du mouvement

Q1. Écrire le principe fondamental de la dynamique en coordonnées polaires de centre O.
Q2. Vérifier que la vitesse angulaire θ̇ vérifie l’équation :

θ̇2 = v2
0

R2 − 2g

R
(1 − cos θ)

Q3. En déduire l’expression de la force de réaction −→
RN tant que la bille suit ce mouvement circulaire.

Q4. Montrer que la bille atteint le point S si la norme de sa vitesse en A est supérieure à une vitesse
limite v0 min =

√
5Rg. Faire l’application numérique pour déterminer v0 min.

On suppose dans toute la suite que cette condition est réalisée : le contact est alors rompu quand le
jouet parvient au point S.
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Partie II. Dispositif de lancement

z

x

R

•z = 0
x = 0

A

•O

•
B

•
C

•S

ℓ(t = 0) = R

ℓ0 = 2R

•M
•
D

Figure 2 – Dispositif de propulsion de la bille

La vitesse v0 de la bille au point A lui a été communiquée par un ressort dont une extrémité est fixe au
point B d’abscisse xB = −4R dans le repère cartésien (A, −→ux, −→uz), de longueur à vide ℓ0 égale à 2R et
de constante de raideur notée k. Une plaque sans masse est fixée à l’autre extrémité C du ressort. Ce
dispositif de lancement est représenté sur la figure 2. Initialement le ressort est comprimé d’une longueur
R et la bille (M) est appuyée contre la plaque, l’ensemble étant maintenu immobile. C’est la détente
ultérieure du ressort qui propulse la bille vers le point A, le contact entre le ressort et la bille étant rompu
lorsque que la longueur du ressort est égale à sa longueur à vide. Les frottements sont négligeables sur
la partie horizontale (plan z = 0).
Q5. Caractériser en justifiant, le mouvement de M sur la partie horizontale entre l’instant où elle se

détache de la plaque liée au ressort et son passage au point A.
Q6. Déterminer l’expression de la valeur de la vitesse v0 de la bille lors de son passage en A, en fonction

de k, R et et m.
Q7. En déduire l’expression de la valeur minimale de la constante de raideur k pour qu’après avoir

parcouru le demi-cercle la bille atteigne le point S. Faire l’application numérique.

Partie III. Atterrissage après la portion de trajectoire circulaire

Après avoir quitté le support au point S, la bille peut atteindre un plan horizontal situé à l’altitude
z = R, commençant au point E de coordonnées xE = −R , zE = R dans le repère cartésien (A, −→ux, −→uz)
et qui se termine par une portion circulaire de rayon R

2 au point F . On suppose que le point F est
suffisamment loin pour que la bille ne puisse pas le dépasser lors de son mouvement aérien après son
passage en S.

z

x

R

•

−→uz

−→ux

A

•O•
E

•S

•
F

•
D

Figure 3 – Dispositif d’atterrissage après la portion de trajectoire demi-circulaire

Q8. La bille peut-elle tomber entre O et E ? Justifier.
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On considère dans la suite que la bille atteint le plan horizontal entre les points et E et F , après avoir
été lancée avec le dispositif décrit précédemment, et être passée en A avec une vitesse de norme v0. On
suppose pour la suite de l’étude, que la bille conserve après l’atterrissage sur le plan horizontal DE la
composante horizontale du vecteur vitesse qu’elle avait à l’instant de l’atterrissage.
Q9. À quelle condition, portant entre autres sur v0, la bille décolle-t-elle de la portion circulaire dès

qu’elle atteint le point F ? Conclure.

Partie IV. Prise en compte des frottements

Dans cette dernière partie, on prend en compte les frottements entre la bille et les différents supports
(horizontaux et circulaires) que l’on modélise par un frottement solide de coefficient noté µ. On rappelle
les lois du frottement solide, en notant respectivement −→

RN et −→
RT les composantes normale et tangentielle

de la force de contact :
— L’équilibre n’est possible que si ∥

−→
RT ∥ ≤ µ ∥

−→
RN∥

— S’il y a mouvement, l’intensité de la force tangentielle est donnée par ∥
−→
RT ∥ = µ ∥

−→
RN∥

Q10. Quelle est la nature des mouvements quand le jouet se déplace sur les supports horizontaux (DA)
et (EF ). Justifier.

Q11. Montrer que la norme de la vitesse de la bille en A est donnée par la relation :

vA =
√

kR2

m
− 6µRg

Q12. Dans la partie circulaire, pour quelles valeurs de θ la bille peut-elle être immobile ? On donnera une
réponse en fonction de µ.

Q13. Sur le portrait de phase représenté sur la figure 4, la zone grisée correspond aux angles θ pour lesquels
l’équilibre est possible. Déduire d’une lecture graphique la valeur du coefficient de frottement µ.

Q14. Exploiter le portrait de phase de la figure 4 pour déterminer la constante de raideur du ressort
minimale permettant à la bille de réaliser le mouvement circulaire jusqu’en S en présence de frotte-
ments.

Q15. Déterminer l’équation de la courbe en pointillés.

Figure 4 – Portrait de phase pour le mouvement de la bille dans la partie circulaire (entre A et S)
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Exercice 3 : Millenium Bridge (∼ 20%)

Exercice adapté de l’épreuve de physique du concours commun Mines-Ponts 2016.

Pour marquer le millénaire, une nouvelle passerelle a
été construite au dessus de la Tamise à Londres pour
un coût total de plus de 20 millions de Livres Sterling.
Quand elle fut ouverte aux piétons on remarqua très vite
qu’elle se balançait latéralement et verticalement en cas
de forte affluence. Avec un grand nombre de piétons, son
mouvement oblique était tel que la plupart d’entre eux
s’arrêtaient et s’accrochaient aux rampes. Des images
et des vidéos ont montré que ces mouvements latéraux
pouvaient avoir une amplitude moyenne de 75 mm et qu’ils
se produisaient avec des fréquences de l’ordre du hertz.
Le pont fut donc fermé deux jours après son ouverture au
public. Dix-huit mois de recherches furent nécessaire pour
résoudre le problème et faire les modifications préconisées
par les ingénieurs qui furent donc finalement consultés.

L’objectif de ce problème est la modélisation de plus en
plus fine d’une passerelle piétonne et la compréhension
de certains problèmes posés par le Millennium Bridge de
Londres.

Partie I. Oscillateur simple

Un oscillateur est constitué d’une masse m dont le centre d’inertie G est repéré
par la position x dans le référentiel galiléen (O, −→ux) , voir figure 1. L’origine O
se situe au niveau du sol. L’oscillateur est relié à un support fixe par l’inter-
médiaire d’un ressort linéaire de raideur k et de longueur à vide ℓ0 ainsi que
d’un amortisseur linéaire de viscosité α, exerçant sur m une force de frottement−→
F f = −αẋ−→ux, avec α > 0. On assimile la distance OG à la longueur ℓ(t) du
ressort. L’ensemble est soumis à l’accélération de la pesanteur −→g = −g−→ux avec
g = 9,81 m·s−2.

Figure 1 –
Oscillateur

Q1. En appliquant la relation fondamentale de la dynamique établir l’équation différentielle :

Ẍ + 2ξω0Ẋ + ω2
0X = 0

dans laquelle on a introduit la fonction X(t) = x(t) − x̃ où x̃ est une constante que l’on déterminera
en fonction de g, ω0 et ℓ0. On précisera les expressions de ω0 et ξ.
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Différents cas peuvent être examinés pour l’excitation (ou forçage) F (t) de l’oscillateur étudié à la pre-
mière question. Nous nous placerons dans l’optique d’une passerelle piétonne.

L’action de la marche d’un piéton est caractérisée par un contact continu sur la surface du sol puisque le
second pied touche le sol avant que le premier ne le quitte. La force engendrée comprend une composante
verticale et une composante horizontale non prise en compte dans cette partie.

Figure 2 – Forçage d’une passerelle par la marche d’un piéton.

Dans le cadre d’un modèle simplifié, nous représenterons cette force, appelée charge, par un vecteur
périodique

−−→
F (t) = −→

F 0 + F⃗1 cos(2πft).

Le vecteur F⃗0 correspond à la force statique, c’est-à-dire au poids du piéton, la fréquence f correspond
à celle d’une marche normale. Nous considérerons que −→

F 1 = 0,4−→
F 0. Ces deux vecteurs seront supposés

constants et orientés comme −−→ux.

On note F0 = ∥
−→
F 0∥ le module de la force statique, Y = X + F0

mω2
0

la réponse en déplacement de l’oscil-
lateur et Y = Ymeiωt sa représentation complexe.

Q2. Que devient l’équation de l’oscillateur en Y sous le forçage piéton ? (l’exprimer en fonction de ξ, ω0,
F1, m, f et t)

Q3. Déterminer la fonction de transfert H(jω), rapport de la représentation complexe de la réponse en
déplacement Y sur la représentation complexe de l’excitation E = 1

m
F1. On exprimera H = Y /E

en fonction de ξ, ω0 et Ω = ω
ω0

.

Q4. Sous quelle condition portant sur ξ, un phénomène de résonance peut-il se produire ? Pour quelle
pulsation ωr obtient-on alors ce phénomène ? Exprimer le gain en amplitude à la résonance |H| (ωr)
dans la limite ξ2 ≪ 1.

Q5. En se plaçant dans l’hypothèse ξ2 ≪ 1 et à partir d’une analyse de la courbe 1 de la figure 3,
déterminer un ordre de grandeur de ξ ainsi que la valeur de la pulsation propre ω0 de l’oscillateur
modélisant le Millennium Bridge avant la mise en place des amortisseurs harmoniques. L’ordonnée
du graphique de la figure 3 est 20 log(ω2

0 × |H|).

Q6. Pourquoi est-il important de déterminer les fréquences de résonance d’une structure soumise à une
action périodique ?
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Afin d’étudier précisément les propriétés du forçage que constitue la marche d’un piéton, on réalise
l’acquisition en laboratoire du signal correspondant à cette sollicitation.

Figure 3 – Schéma et réponse d’un amortisseur harmonique appliqué au modèle du Millennium
Bridge

L’acquisition est effectuée sur des durées allant de quelques secondes à quelques minutes. Les signaux
ainsi obtenus sont similaires mais pas parfaitement identiques. Chacun de ces signaux présente les
caractéristiques essentielles du signal de la charge combinée représentée sur la figure 4. On calcule
alors le spectre de ces signaux en les échantillonnant en N = 300 points équidistants sur un intervalle
[tmin, tmax]. Les différents spectres obtenus sont rassemblés sur la figure 4.
Q7. Analyser et interpréter le spectre de la marche d’un piéton donné sur la figure 4 pour en déduire la

(ou les) fréquence(s) caractéristique(s) de la marche étudiée.

Figure 4 – Spectre du signal correspondant à la marche d’un piéton

Q8. À partir d’une exploitation des données fournies dans le sujet, expliquer l’origine du problème
concernant le Millennium Bridge et justifier que l’installation d’amortisseurs harmoniques ait pu le
résoudre.
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